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Abstract

Both in everyday life and in memory research, people tend to think 
that items are ‘held’ in mind, in the same way that a real-world object 
can be held in one’s hand. Inspired by this metaphor, traditional work 
on visual working memory and visual long-term memory focuses on 
understanding how many objects are remembered or forgotten, or held 
or lost, in particular circumstances. By contrast, newer computational 
and empirical work on visual memory focuses on the role of noise 
in memory representations — in which memories are thought to 
vary continually in ‘strength’ or ‘precision’ — as well as the role of the 
visual hierarchy and priors in structuring memory. In this Review, we 
merge these contemporary theories and evidence. We describe how 
fundamentally noisy memory representations are instantiated at 
different levels of the visual hierarchy and support both visual working 
memory and long-term memory. We also discuss how thinking of memory  
in this way can direct further research and illuminate the nature of 
cognitive function more broadly.
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Visual memory across timescales
We begin with the question of whether it makes sense to consider 
visual memory as a single construct, or whether the more traditional 
view, in which long-term memories are considered fundamentally 
distinct from working memories, is most appropriate. In traditional 
memory research, visual working memory and visual long-term mem-
ory are often studied separately, using different paradigms, by differ-
ent researcher groups, and are often thought of as distinct systems. 
Although we acknowledge that a systems taxonomy can have heuristic 
value, this view is grounded in theories that posit that visual working 
memory and visual long-term memory differ in their mental represen-
tations and intrinsic structure. By contrast, contemporary evidence 
suggests that visual working memory and visual long-term memory 
share mental representations, even though varying task demands can 
lead to the differential recruitment of additional cognitive processes 
that operate over those representations.

Mainstream theories of memory often postulate that visual work-
ing and long-term memory representations differ from each other in 
key ways. One reason is distinctive neural correlates. For example, 
neuropsychological research suggests a distinction between visual 
long-term and working memory based on purported evidence of selec-
tive and distinct impairments to visual long-term and visual working 
memory12,13. It has also been suggested that short-term memory reflects 
transitory electrical activity, whereas long-term memory reflects dura-
ble neurochemical changes in the brain14. Broadly in line with this view, 
some evidence indicates that there are distinct neural signatures asso-
ciated with visual working memory and long-term memory, with the 
sustained and active firing of neurons involved particularly in working 
memory maintenance15,16 but not in long-term memory. In humans, 
such working-memory-specific activity can be tracked with electro-
physiology, such as by the contralateral delay activity17–20, a robust 
component thought to track the amount of information ‘actively’ 
stored in visual working memory21 that disappears when items are 
available in long-term memory22. Similarly, information in working 
memory can be observed in parietal and frontal region activity9 and 
decoded from ongoing activity during the maintenance period using 
neuroimaging23–25.

However, these neural coding differences do not necessarily imply 
differences in the fundamental representations or intrinsic structure 
underlying working memory and long-term memory. For example, the  
neuropsychology work must be interpreted with caution based on  
the observation that participants from clinical populations suffer from 
a wide range of processing deficits that make claims of selective deficits 
to a specific cognitive system difficult26. Similarly, evidence of distinct 
neural correlates for working memory, involving active maintenance 
processes, does not necessarily indicate that distinct representations 
are used in working memory compared to long-term memory. Instead, 
the distinction between typical working memory and long-term 
memory tasks can reflect the amount of activation of a particular 
representation27–30 or the engagement of attentional maintenance 
processes to maintain such activation, with the representations them-
selves being fundamentally the same. For example, the classic modal 
model of memory posited that short-term or working memory exists 
as a buffer that maintains information in a readily accessible state31,32. 
It is therefore often posited that working memory is capacity-limited, 
such that only a small amount of information can be maintained in an 
active state at once, perhaps owing to limitations in attentional mainte-
nance processes33. Thus, rather than requiring two systems, the neural 
evidence is consistent with the view that representations in working 

Introduction
Consider what your dinner plate looked like last night, including the 
colour, size and positions of food on the plate. When you try to bring 
these images to mind, you are trying to retrieve the details of a particular 
visual experience, using visual memory. Visual memory refers to infor-
mation that can be successfully accessed from past visual experiences, 
and the structure of that information.

Visual memory is of broad interest because of its impressive capa-
bilities. These can be appreciated in demonstrations of the method 
of loci, widely used to turn arbitrary words or playing cards into rich 
visual images by the best memorizers in the world1. Visual memory 
also provides key insights into the nature of memory representations. 
Traditional memory research has often focused on identifying separate 
memory systems and on establishing a taxonomy of memory systems 
and their functions2,3 and has focused less on examining the nature 
of stored memory representations. By contrast, research on visual 
memory places a major emphasis on the structure and format of the 
representations of objects and scenes in memory and how proper-
ties of these representations impose limits on what information can 
be remembered accurately4,5. Because the perceptual representa-
tions underlying visual processing are (comparatively) well under-
stood relative to many other domains6–8, research at the intersection 
between visual perception and memory can provide unique insights 
into memory processes by building on what is known about perceptual 
representations and examining how they change when held in memory.

A key insight is that visual memory representations are noisy — 
people can never remember perfectly accurately and the accuracy of 
memory tends to vary in a continuous manner. This insight derives in 
part from the emphasis in visual memory research on visual features 
that vary continuously, such as colour and orientation, and the metrics 
of performance used to assess memory of these features. However, the 
finding that visual memory representations are noisy conflicts with 
the tendency to use a physical metaphor to describe and understand 
memory. People tend to think of an object they are trying to remember 
as either in mind or not in mind, and to talk about items as being ‘held’ 
in mind to describe working memory, just as a real object can be held in 
the hand9. This metaphor often serves as a core mental model for how 
memory has traditionally been thought of: as all-or-none, discrete and 
operating over entire objects or chunks of information.

Given their continuous and noisy nature, however, the idea that 
memory representations are like physical objects that can be held or 
defined as simply existing or not existing, is not a useful metaphor. 
Thus, instead of using this mental model for memory, we turn to an 
analogy from the nature of processing in the visual system (Fig. 1). In 
particular, the visual system is usually conceived of in terms of popula-
tion codes, with many neurons representing a given feature and a given 
location — and each doing so with substantial noise10. Furthermore, the 
visual system contains a hierarchy of representations, in which repre-
sentations are richer and more complex as one moves from primary 
visual cortex up to more anterior visual regions11.

In this Review, we detail how visual memory can be conceived of 
as a noisy and hierarchical system. We begin by reviewing work that 
suggests that representations for objects are strongly related across 
visual working memory and visual long-term memory, and in both 
cases are best conceived of as noisy and variable in strength. We then 
describe how such noisy memories are stored in terms of hierarchical 
memory representations. Finally, we discuss how these ideas lead 
to a reconceptualization of the limits of visual memory at different 
timescales, and the role of visual memory in other cognitive capacities.
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memory and long-term memory are fundamentally the same, but that 
long-term memory is mostly the passive use of these representations 
and that working memory is a form of attention-demanding, activated 
memory, involving control systems that manipulate and maintain the 
same underlying memory representations. According to this account, 
once activated in working memory, a subset of information related to 
pertinent representations can be continuously protected from noise 
accumulation by attentional processes, but the representations remain 
fundamentally similar to those used in long-term memory.

Behavioural evidence is consistent with this account. Despite a 
long history of evidence suggesting that long-term memory is often 
less precise than working memory (such as theories suggesting that 
only the gist survives in long-term memory, causing false memories34) —  
newer evidence shows that there is no fundamental difference in the 
range of levels of precision or memory strength that are possible in 
visual-working and long-term memory. Distributions of memory errors 
obtained from continuous reproduction visual-working and long- 
term memory tasks35 fit with just one parameter model that captures 
memory strength across tasks36 (Fig. 2). This evidence suggests that  
as memory gets weaker in the two systems, it degrades in an identical 
fashion. Of course, typical working memory and long-term memory 
tasks can differ in key ways, even with the same representations under-
lying them. For example, online attentional selection might be more 
often necessary in working memory tasks because many items are often 
presented at once in such tasks, and there is often less spatiotemporal 
context in long-term memory tasks compared to working memory 
tasks, with many items all presented in the same spatial location being 
relevant. Thus, although long-term memories on average might be 
weaker than working memories in everyday-life situations, evidence 
suggests that this difference in strength does not necessarily reflect a 
fundamental difference in memory systems or their representations 
but rather in the way they tend to be used and investigated.

Thus, the evidence is consistent with a view that visual working 
memory is a form of activated long-term memory, with similar repre-
sentations that differ in their degree of activation or in the processes 
being used to manipulate and maintain them. Seen through this lens, 
attention ‘selects’ and upweights goal-relevant information, and pro-
vides protection against the accumulation of noise across populations 
of neurons throughout the visual hierarchy37, and memories protected 
in this way are working memories.

Prior work has criticized the unidimensional view of visual memory 
in part because the idea that memories are active in working mem-
ory (and less active in long-term memory) has not been consistently 
operationalized. For instance, activation has been used to describe 
both the strength of mental representations, as well as dynamics in 
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Fig. 1 | Visual memory at different timescales. Features of a visual object 
(1) are extracted and processed, eliciting a noisy population of activity over 
feature values, such as edges and colour (2). In this case, the colour of the 
object is relatively arbitrary. Perception of the relevant colour is noisy, and 
multiple colours near the colour shown (green) will all feel somewhat familiar 
after encoding the item (3). Actively focusing on the information in mind 
using attention can slow, but not stop, the accumulation of noise in that item’s 
representation (noisy representation in colour, original distribution in grey)  
(4). Sampling the same memory representation at different time points reveals 
that the accumulated noise corrupts and alters the qualities of the originally 
encoded information, resulting in a noisy and imprecise sense of the colour of  
the original object ((5) and (6)).
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neural processing. Furthermore, the conception that activation alone 
differs between working memory and long-term memory is generally 
insufficient to explain the differences across working memory and 
long-term memory tasks. For example, many theories treat activation 
levels as varying even among different long-term memories, and some 
work suggests that working memory can make use of inactive states38,39 
in addition to active ones. This notion of ‘activation’ leads to theories 
arguing that up to a hundred or more recently seen items can be active 
in long-term memory40, as compared to ‘inactive’ items that are seen 
equally often but are not relevant in the current context41. Reconciling 
all the notions of activation across both neural and cognitive meanings 
of the term and across both working memory and long-term memory 
remains a difficult and important task for unidimensional theories of 
memory, and one that has been the source of multiple proposals about 
the architecture of working memory33,42–45.

In summary, within this unidimensional view of visual memory, 
visual working and visual long-term memory are not distinct systems: 
instead, both involve computations over the same types of memory 
representation. Importantly, the nature of these computations is con-
strained by the demands of the task, such that some visual memory 
tasks elicit processing constraints that others do not. Below, we develop 
this unidimensional framework by integrating findings from the vis-
ual working and long-term memory literature on the nature of visual 
memory representations. We then detail how differential demands 
can elicit processing bottlenecks in visual memory tasks. Finally, we 
discuss how the unidimensional view fits parsimoniously with more 
ecological theories that take into account the role of prior knowledge, 
stimulus complexity and meaning in visual memory across timescales.

Memories are noisy and vary in strength
A major dichotomy in the visual memory literature has been between 
views in which memories are conceptualized as all-or-none — with 
bound objects that are either remembered with complete accuracy or 
fully lost46,47 — and views in which memory representations are noisy, 

hierarchically structured and distributed — with object features that 
degrade continuously and relatively independently48–50. This question 
of how to construe the fundamental properties of visual memory rep-
resentations has dominated the literature on visual working memory 
for the past couple of decades, and physical analogies based on hold-
ing items in mind have long pushed researchers toward more discrete 
views of memory.

In the following sections, we describe behavioural, neural and 
computational evidence that visual memory representations are noisy, 
which is synonymous with the view that they vary in strength. We also 
discuss how noise accumulates over short and long timescales and 
how memory representations can vary at different levels of abstrac-
tion: from individual features to entire objects, as well as how the 
graded nature of memory representations emphasizes the role of 
decision-making in mainstream memory tasks.

Graded memory strength in working memory tasks
The question of whether memory is noisy or all-or-none has been most 
often examined in the domain of short-term, working memory tasks. 
All-or-none theories of memory in which items are either present (and 
perfectly represented) or absent entirely have traditionally dominated 
the analysis of visual working memory data from change detection tasks 
(Fig. 3a). In a typical change detection task, people are shown an array of 
simple stimuli that they have to remember after a brief delay. After this 
retention interval, people are shown a single stimulus and asked to make 
a discrete judgement regarding whether it changed or did not change 
compared to the stimulus shown in that location in the original memory 
array. The discrete nature of ‘change’ or ‘no change’ responses provide 
only a coarse measure of memory errors and often incorrectly leads to 
inferences such as that items are either present or absent in memory51.

By contrast, most contemporary work uses tasks that yield a more 
fine-grained measure of visual memory representations. Continuous 
reproduction tasks (Fig. 3b) provide a way of assessing gradations in 
memory representations and occur often in visual working memory. 
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Fig. 2 | Memory strength across time. Distributions of memory errors (grey) 
obtained from continuous reproduction visual-working and long-term memory 
tasks35 fitted with a model (blue line36) that requires only a single parameter to 
capture memory strength. When the same stimulus features are used and are 

probed in the same way, representations across the two timescales can be strong 
and precise or weak and noisy and degrade in an identical fashion as memory 
strength weakens.
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In such tasks, instead of providing a binary response52–54, people are 
asked to reproduce their memory of a probed feature or object using a 
continuous response wheel, which provides fine-grained information 
about both the magnitude and direction of memory errors. In these 
tasks, responses generate a distribution of memory errors in a single, 
continuous feature dimension (such as colour or orientation). For 
instance, in the change detection task, people are shown a memory 
array with simple stimuli and instructed to remember these stimuli and 
their locations over a brief retention interval. However, after the delay, 
people are shown a spatial probe along with a continuous wheel that 
shows all possible values in the continuous feature space. Accordingly, 
people are instructed to select the feature value they think most closely 
matches the value of the probed item. Thus, unlike change detection 
tasks, the continuous reproduction wheel provides a fine-grained 
measure of memory. Similar fine-grained performance metrics can 

also be arrived at when using forced-choice recognition tests that vary 
the similarity of the seen and unseen items36,55.

A first major insight from continuous reproduction tasks is that the 
distribution of errors in visual working and long-term memory tasks 
are incompatible with fully all-or-none theories of memory (Fig. 3c). 
These tasks reveal that the noise (variance) of memory errors increases 
with memory load50 and delay36,49, and decreases with more encoding 
time36, as well as repeated study, and do so in a way that is not solely due 
to all-or-none failures35. These results challenge an all-or-none inter-
pretation because they indicate that simple task manipulations can 
expose the graded changes that exist in memory strength and accuracy.

A second major insight from tasks that allow continuous measure-
ment of memory accuracy is that some task conditions introduce subtle 
memory biases, such that similar representations sometimes repulse 
away or attract towards one another56–61. For instance, when people are 
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memory representations46,51. b, Continuous reproduction tasks are memory 
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fine-grained measure of the magnitude and direction of memory errors, which 
reveal that representations are noisy and are rarely completely lost in a discrete 
fashion. c, The major insights are that the precision of memory representations 
declines monotonically with memory load, declines with increasing delay, and that 
memory representations can be biased (for example, repulsed, or pushed away 
from one another) depending on the relationship between currently active items.
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presented with many red items that slightly vary in hue, the represen-
tations of these items can be pulled or attracted towards their average 
hue. Alternatively, when people are presented with just a few similar red 
items, their representations can become more distinct and repel one 
another (Fig. 3c). These results imply that items are not represented 

and recalled independently of each other but are represented in a way 
that causes subtle interactions between them. Both insights are broadly 
inconsistent with the typical physical analogy of holding discrete items in 
mind and therefore with all-or-none theories of memory representation.

Thus, all contemporary theories of visual working memory have 
moved beyond the concept of complete discreteness in memory, and 
broadly agree that information in memory is represented imperfectly 
and that this imprecision varies with a number of factors such as work-
ing memory load, encoding time, delay and several others. Most neural 
and cognitive theories broadly endorse the view that there is internal 
noise in perceptual, attentional and memory processes, as well as 
sources of external noise from the environment. These sources of noise 
can be affected by how attention is distributed during encoding62, 
memory load63 and retention intervals64. All of these sources influence 
the extent to which fluctuations in internal and external noise affect the  
fidelity of memory representations.

Whereas nearly all models agree that memories must be considered 
noisy and imprecise, an increasingly large number of theories of visual 
working memory now subscribe to the view that noise accumulation 
among items alone is sufficient to explain the limits on performance 
and the pattern of errors obtained in such tasks without any additional 
factor of all-or-none loss of items36,65,66. However, some hybrid ‘mixture 
models’ include additional factors that postulate that continuously 
graded memories exist, but also that all-or-none loss of items can occur 
under some conditions67,68. These models posit that some items that 
were seen and processed by the visual system while they were visually 
present are nonetheless completely unavailable and that observers have 
no remaining information about them, even less than a second later, 
such that when people are probed on those items, they are forced to 
make completely information-less guesses67,68 (Box 1). Although such 
hybrid models were initially influential because they were unique in 
providing an account of the distribution of errors in reproduction 
tasks69, later work showed that continuous models can parsimoniously 
account for these distributions of errors just as well70. For example, 
the finding that people tend to have little information about the fifth 
or sixth items when asked to report a set of six briefly shown items fol-
lows naturally from models that posit that noise accrues over items and  
time, without all-or-none failures70. Thus, modern models without 
any added assumptions about all-or-none failures generally account 
for the data as well or better than such hybrid models36,65,66. Moreover, 
hybrid models that attempt to predict how often pure, information-
less guesses arise when an item is not in memory, across different set 
sizes (such as how many putative guesses there are when shown four 
versus six items)69, generally fail to accurately predict the full pattern of 
errors as memory load increases71. Thus, modern hybrid models gener-
ally cannot sufficiently explain performance across set size, because 
they do not tend to provide any quantitative account of how often 
all-or-none losses are expected to occur across different conditions or 
set sizes, which was initially considered a major strength of hybrid mod-
els (for further discussion, see ref. 72). Overall, current findings about 
how visual working memory varies as a function of different variables, 
such as memory load and delay, can be parsimoniously explained with 
a unidimensional view according to which memory representations 
vary in noisiness, and do not require the additional assumptions about 
all-or-none coding that are necessary in hybrid models.

Noise across time
If working memory and long-term memory representations are fun-
damentally similar, one would expect models that focus on long-term 

Box 1

The utility of random guesses
It is often proposed that memory performance includes many 
responses that are completely independent of the information held 
in working memory, with no relationship between the response 
and the encoded or remembered information. In such a view, 
quantifying ‘pure guesses’ is critical to understanding working 
memory68,69 and long-term memory214–216. However, the utility of 
this construct is uncertain under the view that memory is both 
hierarchical and continuous in strength.

Consider a visual working memory task in which one sees 
several different apples presented on a display and must remember 
their sizes for a memory probe a few seconds later. The majority 
of evidence suggests that although noise will accumulate for 
each item, this noise cannot be characterized as instantaneous 
and infinite, as is required for an account that argues for complete 
forgetting (and thus pure guessing). Instead, most data suggest 
that information about every item is probably represented to some 
extent, even if a very large degree of noise is present36,51,65,66,70. 
However, even if items are so noisy that they might functionally be 
completely gone from memory, continuous models do not conceive 
of this situation as a distinct state of ‘guessing’. Such models instead 
have the core assumption that the same populations that give 
rise to perceptual and memory experiences also give rise to the 
noise that is present in such memories, and thus the noise is never 
content-free (even when items are extremely poorly represented).

Even if, in contrast to this view68, we accept that representations 
can be fully lost from memory, it is still unclear whether classifying 
a response to that item as a guess is useful. For example, people 
sometimes use the word ‘guess’ even when, without any specific 
information about a given item, one has substantial information about 
the items presented in a more general sense217. In the example with a 
display of apples, one will probably know what size the items were in 
general on the display57, will probably know that all the items present 
were apples, will have strong expectations about the expected size 
of an apple in general (versus other fruit such as a watermelon192,218), 
and will know the expected size of each item on a display with just 
three apples on it. All of this information was acquired during the 
episode and informs the response about the size of the particular 
item, even if the individual representation of the actual size of a single 
apple is indistinguishable from noise at test, thus making the concept 
of guessing extremely incomplete as a description of both people’s 
behaviour and people’s internal representations. Thus, rather than 
a focus on whether participants are ‘guessing’, researchers should 
focus on capturing the true and complete contents of memory, taking 
into account the fact that memory is contextual, noisy, reconstructive 
in nature140 and depends on integration across multiple levels of 
representational abstraction57,198.
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memory rather than working memory to also be focused on understand-
ing memory noise and imprecision. However, one notable difference 
between traditional theories of visual working and long-term memory 
is how they conceptualize noisy memory representations. Theories of 
visual long-term memory typically conceive of noise as affecting the 
‘strength’ of memory representations rather than the noisiness or preci-
sion of those memories. This construct of memory strength follows from 
a long tradition of signal-detection-theory approaches for measuring 
memory73,74. Within the signal detection framework, previously seen 
and unseen items give rise to two different distributions of familiarity 
signals. When asked to make a memory judgement (such as which of 
two items you saw), familiarity signals from comparing memories to 
stimuli along different dimensions are collapsed into a unidimensional 
continuum of signal strength, with seen items having higher average 
signal strength than unseen items75. Accordingly, the standardized dis-
tance between the seen and unseen distributions (traditionally referred 
to as the ‘noise’ and ‘signal + noise’ distributions and often captured 
by the signal detection measure d′) is assumed to reflect the relative 
‘strength’ of remembered items. Thus ‘memory strength’ is how much 
more familiar, on average, previously seen items seem compared to 
previously unseen items.

By contrast, most visual working memory models, as described  
in the previous section, conceive of noise in memory representations in  
terms of precision (such as how tight the errors are around the true 
value when asked to reproduce an item) rather than strength67,68,76. The 
construct of visual memory precision follows from characteristics of 
the continuous reproduction task. In this task, the variance of the error 
distribution around the true item value is typically interpreted as a 
measure of how precisely a given feature or object was remembered69.

The constructs of memory strength and precision ultimately rest 
on the same fundamental assumption: that memory representations 
are noisy and therefore vary in their match to the information that was 
actually seen. Additionally, the two constructs can be formally linked by 
signal detection theory with an entire population of signals36 (Box 2). 
Importantly, how confident someone is in their memory tracks both 
the precision and strength of memory representations, which provides 
another empirical bridge between the two constructs. In the long-term 
memory domain, it is generally found that confidence tracks memory 
performance extremely well, and that such confidence judgements are 
generally unaffected by demand characteristics77. Similarly, in work-
ing memory, confidence also tracks performance accurately even in 
continuous feature spaces51,78,79, and this relationship can be naturally 
accounted for by models that relate precision65,70 to confidence or 
those that use signal-detection-based measures of strength to predict 
confidence36.

Other measures that serve as an index of confidence — for exam-
ple, asking participants to report the full range of feature values 
they think an object had rather than a single value79,80 — suggest that 
participants have an internal sense of uncertainty that tracks with 
memory performance in working memory tasks. This relationship  
is similar to the relationship between confidence and accuracy that is 
fundamental to measures of performance in long-term memory tasks. 
Taken together, there might be a direct mapping between people’s 
confidence judgements and a latent, continuous memory signal that 
is used on both visual working and long-term memory tasks. Confi-
dence judgements and other judgements of uncertainty51,81 can be 
seen as providing convergent support for the view that precision and 
strength ultimately describe the same fundamental properties of visual 
memory representations: that visual memory representations are 

noisy and vary continuously in both working memory and long-term 
memory tasks.

Noise across multiple features
The view that visual memory representations for single features (like 
colour or orientation) are noisy raises the question of how to think 
about items that consist of a conjunction of multiple features such 
as shape, orientation and colour. Although this ‘binding problem’82 
has traditionally been framed in discrete terms (such as ‘are both 
features remembered or is one forgotten?’), in the context of noisy 
memory representations the question is whether features accrue 
noise independently or jointly or both. This question continues to be 
actively debated, but the latest evidence suggests that features seem 
to accrue noise largely independently83. For instance, memory errors 
in a continuous reproduction task are largely uncorrelated across fea-
ture dimensions84,85. Likewise, independent-feature resource models, 
which postulate that a separate set of resources are used to support 
memory for different features, such as colour and orientation, outper-
form shared resource models, in which colour and orientation compete 
for the same pool of resources, in a version of the change detection 
paradigm86.

Evidence for independent noise accrual of features has also been 
reported for real-world objects. People commit more binding errors 
(swapping features such as colour across objects) when state (object 
configuration, like a full or empty mug of coffee) and exemplar (cat-
egory, like mug) are jointly manipulated, suggesting that the two fea-
tures can be forgotten or misbound separately from each other48. This 
finding provides convergent support for the view that object features 
are stored at least somewhat independently and not as unified, all-or-
none units that accrue noise holistically and are forgotten holistically. 
Similarly, in long-term memory tasks, different object features also 
seem to be represented at least to some degree independently87.

Despite this evidence for independent noise accrual across stimu-
lus dimensions, visual working memory studies tend to find a clear 
memory benefit when visual features are part of the same object88. 
For example, it is easier to remember two features (such as colour and 
orientation) when they are bound to the same object, compared to 
separate objects86. This benefit of objecthood might reflect the ben-
efits of attending to a single as opposed to multiple spatial locations89. 
However, classic work on visual attention also reveals evidence for 
benefits of object-based attention mechanisms, even when spatial 
distance is controlled90 (for a critical analysis of object-based atten-
tion effects, see ref. 91). Collectively, the joint finding for independent 
noise accrual and spatial and object-based benefits for memory for 
features is consistent with the view that different features generally 
accumulate noise independently. However, spatial and object-based 
attentional mechanisms can introduce additional, correlated sources 
of noise accrual during encoding or modulate external and internal 
noise accrual across feature dimensions.

Decision-making under noise
A critical implication of the view that memories are always noisy and 
imprecise is that people must make probabilistic inferences based on 
noisy evidence to decide how to respond in memory tasks92,93. Thus, 
unlike traditional all-or-none views, according to which people make 
memory judgements in a straightforward way by reading out whether 
an item is or is not in memory, within a continuous memory framework 
people have to use additional criteria for reporting whether they do 
or do not have enough information to endorse a particular response. 
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Accordingly, researchers must always consider the decision-making 
processes that underpin memory tasks. This point and related ones 
have often been made previously in the context of recognition memory 
tasks78,94–96, such as old–new and change detection tasks in long-term 
and working memory research, respectively. These tasks are frequently 
misused and misinterpreted because the decision process is not care-
fully considered78. Decision-making processes are integral in such tasks 
because each stimulus elicits a noisy familiarity signal, so that people 
must set a decision criterion for responding whether an item is old or 
new, or whether a change occurred or did not occur81. Thus, it is critical 
to consider that variation in people’s criterion setting can lead to large 
differences in measures like overall accuracy without reflecting any 
underlying change in the memory representation itself.

The study of decision-making processes in visual memory tasks 
is especially central in more applied settings, like eyewitness mem-
ory tasks in which people must select the face of the guilty suspect 
amongst a lineup of faces or report that the guilty suspect is not part 
of the lineup97. Much work suggests that in such tasks people do not 
simply process each face independently, but might use higher-level 
decision-making strategies, such as discounting features that are 
common to all faces98. The development of computational models to 
capture such strategies is extremely important to help to dictate how 
to construct lineups that increase the likelihood that the guilty suspect 
is correctly identified and to decrease the likelihood that an innocent 
suspect is incorrectly identified.

Decision models have been rigorously applied in many visual 
memory tasks beyond eyewitness memory99–102. For instance, in one 
study researchers applied sequential sampling models to examine 
the decision processes that underpin performance in continuous 

reproduction tasks103. This modelling work provided insight into how 
memory precision relates to a noisy process of evidence accumulation 
in perception and memory that underpins memory-based decisions.

In sum, the view that visual memory representations are funda-
mentally noisy highlights that both short-term and long-term memory 
representations are continuous and share the same fundamental prop-
erties (Fig. 2). These assumptions apply to memory representations at 
different levels, from features to objects, and fits parsimoniously with 
neuro-computational population coding theories of perception and 
memory. Finally, the continuous representation view highlights that 
people must have ways of using noisy evidence to make memory-based 
judgements and actions, which highlights the fundamental role of 
decision-making processes in laboratory and real-world memory tasks.

Capacity limits
Given evidence that memory representations are continuous, a criti-
cal research goal has been to characterize limits in visual memory 
through a continuous framework. The working memory and long-term 
memory literatures have taken different approaches to this question. 
Whereas in long-term memory much work has accepted that no sin-
gle fixed capacity limit can be found because the effect of interfer-
ence between items and the role of retrieval cues will be complex and 
stimulus-dependent, the working memory literature has been much 
more focused on attempts to find a fixed resource limit that explains 
performance in simplified settings.

One major difference between visual working and long-term 
memory is often framed as differences in their putative capacities. 
Unlike visual long-term memory, which is thought to be virtually 
unlimited, visual working memory is thought to be extremely limited, 

Box 2

Memory as a point or a population
Conceiving of memory representations as noisy helps to bridge the 
gap between cognitive and neural models of visual working and 
long-term memory. Much neural evidence suggests that cognitive 
representations are instantiated in distributed patterns of activity 
across neural populations and that activity across and within these 
populations is corrupted by noise70,219,220. By contrast, many 
cognitive models of memory — especially long-term memory —  
tend to treat memory for an object as being effectively a single 
unitized familiarity signal, perhaps aided by other context-based 
sources of memory when determining whether an item has been 
seen before75,221. In the past few years, work has suggested that 
these two views can be naturally reconciled in working memory and 
long-term memory by taking the signal-detection-based approach 
common in understanding familiarity and turning it into a population 
of familiarity signals modulated by psychophysical similarity36. On 
the neural level, psychophysical similarity can arise from the tuning 
functions in feature-selective populations of neurons66 and memory 
retrieval involves decoding these neural patterns of activations of 
stored features. Approaches like these therefore provide a common 
framework for thinking about noise across both cognitive decision 
models and neural models, bridging different levels of processing222.

Conceptions of memory that are based on a population of signals 
for remembering a single colour are quite different from views in 
which what is stored is just a single point representation. An actively 
debated question deeply connected to the population coding view 
of visual memory223 is whether people truly represent perceptual and 
visual memories as point estimates or as a probability distribution 
over feature values224. This question is difficult to address because 
versions of point-estimate models can mimic models that postulate 
probabilistic cognitive representations225. Thus, addressing this 
question might depend critically on understanding the linking 
function between neural activity and cognitive representations. For 
instance, although population coding neural models are strongly 
compatible with the idea that people represent visual memories 
probabilistically (in early visual cortex), it is possible that this activity is 
inaccessible to higher-level processing and therefore cannot be used 
to make decisions in memory tasks. Nevertheless, people’s subjective 
uncertainty in their memories tracks qualitative and quantitative 
properties of their memory errors79,80, indicating that at a minimum 
people do have access to and read out information regarding how 
noisy their memory representations are, which suggests the possibility 
that visual memories are truly populations, not points.
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with performance dropping quickly as more information must be 
maintained54,104. Although there are undoubtedly constraints on how 
much information can be actively maintained in working memory, espe-
cially given limits on attention or maintenance processes that work to  
reduce noise in task-relevant representations, most tasks designed  
to determine working memory limits also artificially constrain memory 
capacity by intentionally employing situations in which the most use-
ful memory cues are limited in their availability (due to interference 
or cue overload). Despite their wide use and historical significance, 
such tasks produce a greater accumulation of memory-based noise 
than in tasks with reduced attentional demands, in which there is less 
interference and more diagnostic retrieval cues. As attentional mecha-
nisms improve the quality of actively maintained information, these 
paradigms are informative about the capacity of attention and work-
ing memory maintenance processes, which is what they are designed 
to probe. However, they might not be very reflective of more genu-
ine, real-world uses of working memory, which rarely occur under con-
ditions designed to reflect solely the limits of attentional maintenance 
processes. Instead, many working memory tasks reveal primarily how 
accurately people can maintain information over short intervals only 
in quite unfavourable and unnatural circumstances. For example, 
typical visual working memory tasks involve the simultaneous flash-
ing of many meaningless, single-feature items for less than a second54, 
whereas typical visual long-term memory tasks involve the sequential 
presentation of meaningful items for several seconds each55. As we 
explain in detail in the following sections, the contrast between these 
tasks makes it unsurprising that performance in the former would be 
worse than in the latter. Many purported differences between memory 
systems can instead be interpreted through a unidimensional view, in 
which different visual memory tasks place differential demands on 
attention and provide different amounts of task-relevant information 
that can be used to retrieve memories with higher fidelity.

Capacity in the laboratory versus the world
Differences in presentation format and stimuli across many working 
memory and long-term memory tasks introduce differential effects of 
spatial and temporal context that do not always reflect the true differences 
in everyday uses of shorter-term and longer-term visual memory. How-
ever, there are some differences between typical working memory and  
long-term memory paradigms that might reflect genuine differences in 
the real-world use of memory at short and long durations. For instance, 
spatiotemporal cues about an object — such as the spatial location in 
which it was shown and the context of other items around it — might be 
readily available in the environment in shorter-term but not longer-term 
memory tasks105 because such cues tend to be available and stable only 
for short durations in the real-world. For example, while pouring tea, 
one’s mug will probably stay in the same place, but over the course 
of a day it will probably change position quite often. These effects of 
context might differentially aid retrieval through external cues105,106 
and introduce biases into memory representations58,60.

However, other differences between laboratory-based working 
memory and long-term memory tasks are not necessarily typical of 
shorter-term and longer-term visual memory in the world. As an exam-
ple, differences in encoding demands between typical working memory 
and long-term memory tasks are introduced if stimuli are presented 
simultaneously in several spatial positions or sequentially in the same 
position. For instance, a typical visual working memory task involves 
the simultaneous presentation of many objects, and people must 
distribute visual attention broadly among multiple items at once with 

no priority difference between the items and little time for elaborative 
encoding. By contrast, sequential tasks in which objects are presented 
one at a time, like those typically used to assess long-term memory, 
might be more representative of real-world situations in which selec-
tive priority and elaborative encoding can take place. These and other 
differences in presentation format can drastically change estimates of 
working memory capacity for meaningful stimuli; people seem to have 
a higher capacity for meaningful objects presented serially107 and under 
some conditions seem to have no upper bound in how many objects 
they can recognize after serial presentation108. Indeed, in contrast to 
prominent claims52,54,109,110 that visual working memory tasks are not 
encoding-limited, but only limited by maintenance capacity, addi-
tional encoding time significantly enhances performance in working 
memory tasks even for objects with a single feature36,111,112. Critically, 
in many realistic situations people might largely use working memory 
by sequentially focusing on a small number of items113,114, implying that 
visual working memory tasks in which many items of equal relevance 
are simultaneously presented at once for a brief duration might be less 
characteristic of real-world demands. In summary, it is important to 
consider the role of such attentional limits and differential encoding 
demands in visual working and visual long-term memory tasks before 
attributing performance differences in these tasks to true differences 
in capacity or to core differences between distinct memory systems.

Visual working memory resources
In the working memory domain, many attempts have been made to 
formalize a single, limited capacity. This limited-capacity view was 
popularized by the famous report that people seem to maintain only 
about seven ‘chunks’ of information115. The idea that working memory 
capacity is set in terms of discrete chunks or items has dominated the 
traditional view of visual working memory capacity through the lens of 
‘slot’ theories. According to these theories, the architecture of working 
memory is composed of a discrete number of slots that store objects 
composed of single or bound features and these slots are directly 
responsible for the limits of working memory capacity46,47,69,116–118. This 
framework provides an intuitive way of thinking about capacity limits 
as a discrete number of items that can be held in memory. Despite this 
intuitive appeal, strong versions of this view also construe memory 
representations as all-or-none, which cannot account for the extensive 
evidence that memory representations vary in strength or noise.

However, although there is overwhelming evidence that memory 
representations are continuous, it has proved conceptually challenging 
to provide a rigorous characterization of working capacity in terms of 
resources119,120. Attempts to measure and define a single resource limit 
often hold many of the factors that would be expected to influence 
performance in working memory tasks fixed (such as encoding time, 
delay, contextual cues, and/or presentation format). Then research-
ers manipulate and measure how many simultaneously presented 
simple items can be remembered. These tasks therefore investigate 
a highly limited subset of what would be required to truly understand 
what constrains performance in tasks in which attention is used to 
protect items in memory over short delays. It is therefore unclear 
whether any putatively fixed resource limits are meaningful in more 
real-world contexts or across even small variations in task. Within these 
confines, substantial computational modelling work has been devoted 
to developing concrete definitions of resources. For instance, some 
researchers define resources as ‘neural real estate’76,121 and suggest 
that visual memory representations are distributed across popula-
tions of neurons in the visual cortex. In such models, the main source 
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of resource limits arises from the fact that a fixed firing rate is used to 
represent both a few and many items in memory (the basic concept of 
divisive normalization122).

At the level of cognitive representations, researchers use prin-
ciples from signal detection and sampling theory103,123,124 to define 
resources as a limited number of ‘evidence samples’125, which determine 
performance across variations in memory load. Although sampling 
theory makes more principled predictions than theories that simply 
postulate generic resources, the construct of samples is also poorly 
defined. It will therefore be important to define samples more rig-
orously, as in a new proposal that retrieval of representations from 
visual working memory reflect draws of samples from noisy spiking  
activity in a population of neurons70. It will also be key to expand the 
understanding of resources beyond an understanding of how well 
people represent different numbers of simple objects shown briefly.

There has also been a resurgence of work using information-theory 
modelling approaches that has yielded insights into the properties of 
resource-limited memory systems. These approaches frame memory 
systems in terms of concepts like compression126 or rate distortion 
theory127. For instance, rate distortion theory, which aims to explain 
how a capacity-limited system should store information, can be cou-
pled with prior knowledge and task relevance within deep neural net-
work modelling128 to simulate many fundamental aspects of people’s 
memory errors, such as biases towards the ensemble of remembered 
items57. Broadly, this modelling approach falls in line with resource 
rational models129,130 according to which people select computations 
that optimize outcomes but minimize the resource cost of implement-
ing these computations. Such models have promise for understanding  
resources in a more general way, and across a broader set of tasks 
including visual working and long-term memory tasks.

As noted above, many of these computational modelling frame-
works of capacity were developed using laboratory tasks that require 
short-term memorization of simple stimuli presented simultaneously. 
Such a simultaneous presentation format does not necessarily reflect 
how information is encoded over the short term in real-world scenarios, 
when each item might generally be encoded serially and one might 
often re-sample items rather than push the limits of working memory 
capacity113,131–133. Indeed, estimates of visual working memory capacity 
when people encode meaningful (but not meaningless) items serially 
rather than simultaneously increase substantially, probably because 
this format provides time to connect online memory representations 
to existing knowledge107. Even for simple stimuli, claims that encoding 
time was not a limit on performance52,54 have not held up in experiments 
using more psychophysical methods, which reveal that performance 
increases relatively smoothly with increasing encoding time36,111,112. 
These findings underscore that there are many experimental levers that 
can, and should, be used to investigate and build ecological models of 
visual memory processes across time (Box 3).

Attention and encoding limits
Another major source of capacity limits in both visual working and 
long-term memory tasks are due to attentional processes during the ini-
tial encoding of items rather than maintenance processes. This insight 
initially stems from research on change blindness, a phenomenon 
wherein people fail to detect changes in an image after a brief transient, 
such as an eye movement or a flicker of the display134. Importantly, these 
changes can be large and appear in salient parts of the display, meaning 
that change blindness does not simply reflect failures of the percep-
tual system135. Change blindness effects have been used to motivate 

theories of consciousness136,137 and working memory138,139 because they 
suggest that people remember only a small portion of what they see 
despite having a rich phenomenological experience of their immedi-
ate environment. Critically, one major way to nearly eliminate change 
blindness effects is to direct people’s attention to objects126,140, which 
ensures that objects are encoded into memory.

Other work suggests that encoding in visual working memory 
predicts the bandwidth of visual long-term memory. For instance, the 
effects of interference can be offset via attentional processes141–145 that 
induce repulsive biases at encoding and individuate similar memory 
representations in visual long-term memory58,146. Other researchers 
have found that individual differences in performance on visual work-
ing memory tasks predicted performance on visual long-term memory 
tasks, but only under conditions in which visual working memory load is 
taxed147. These results suggest that effects on visual long-term memory 
were due to failures of encoding rather than of maintenance capacity, 
and underscores how controlling for task demands aligns with a uni-
dimensional model of visual memory across timescales. Other work 
also provides converging support for the view that manipulations of 
attention can help to upweight and improve long-term memory for 
objects148. However, attentional processes might only be used to depri-
oritize irrelevant memory representations indirectly, under conditions 
of biased competition149. More precisely, some evidence suggests that 
beneficial effects of attention occur only when multiple (two) stimuli 
were presented simultaneously and the irrelevant item was paired with 
an item than needed to be attended. This work directly connects to the 
finding that simultaneous as opposed to serial presentation in visual 
memory tasks can introduce attentional capacity limits and uncover 
structural bottlenecks150.

Thus, attentional limits at encoding are common to both visual 
working and long-term memory despite being generally understudied 
in visual long-term memory. Attentional limits at encoding, as well 
as online activation, fit well with the view that memory representa-
tions are fundamentally noisy. These limits can therefore be viewed 
as one kind of resource that places limits on memory performance 
when encoding demands are high either in short-term or long-term 
visual memory tasks. More broadly, poor performance in most visual  
working memory tasks might reflect differences in encoding demands of 
visual working memory and visual long-term memory laboratory tasks 
in addition to or instead of differential memory maintenance abilities  
or differential memory representations over different timescales them-
selves. Thus, rather than viewing visual working and long-term memory 
as distinct systems that differ in capacity, a cognitive architecture in 
which attentional maintenance supports working activation of a subset 
of items that otherwise share the same underlying representation as 
long-term memory is a useful framework.

Influence of knowledge on visual memory
Visual memory is often assumed to be inherently perceptual in nature. 
However, existing knowledge and hierarchical knowledge structures 
help to scaffold memory of real-world visual stimuli in both working 
memory and long-term memory. This influence is taken for granted 
in visual long-term memory tasks, in which participants tend to be 
shown real-world scenes, objects or faces as stimuli143,151 and where con-
ceptual knowledge has long been known to scaffold visual memories. 
For example, one of the most classic studies in constructive memory 
had people repeatedly draw an ambiguously face-like visual stimulus 
from memory and found that these drawings slowly morphed over 
repeated reproductions to look more like a genuine face27. These results 
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demonstrate that people scaffold their memory for visual features 
using their knowledge of faces. Similarly, classic work has found that 
visual reproductions of ambiguous images are pulled in the direction 
of the labels associated with the images28.

By contrast, the role of knowledge in visual working memory tasks 
has largely been underappreciated. Below, we describe how consider-
ing the role of meaning in shorter-term visual memory tasks has trans-
formed views on how visual memory representations are maintained in 
memory tasks. We then disentangle the joint contribution of stimulus 
complexity and meaning in shaping visual memory representations. 
Finally, we integrate these points by discussing cognitive and neural 
evidence for the hierarchical nature of visual memory and discuss 
how hierarchical structures and priors scaffold memories for visual 
information in the real world.

Meaning in working memory
In traditional visual working memory tasks, people tend to be shown 
meaningless stimuli, such as circles, defined by simple features, such 
as colour50,54,66. These simple, meaningless stimuli are often assumed 
to assess the core capacity of working memory best, because they have 
no semantic associations and therefore require ongoing active mainte-
nance to remember them46,152. Sensory recruitment models based on 
such tasks reinforce the idea that people store visual working memories 
within the sensory regions that process such stimuli (mainly low-level 
visual areas38), which can lead to inferences because they are stored 
solely in an inherently perceptual format.

Using simple, single-feature stimuli probably does increase 
the need for attentional maintenance to protect stimuli from noise, 
because such stimuli provide very poor long-term memory traces153. 

Box 3

Continuity in memory demands richer models
The finding that performance increases 
relatively continuously across different 
visual working and long-term memory 
manipulations and tasks raises the 
question of whether a single capacity 
limit is a useful construct, particularly in 
the domain of working memory where it 
is often used to motivate architectures 
and theoretical models and to 
fuel debates47,70.

Models of visual working memory 
are typically developed to explain how 
performance varies as a function of  
how many items are simultaneously,  
briefly presented65,69,226. As such, these 
models explain just a single slice through 
the space of possible levels of memory 
performance (top graph in figure). For 
instance, although modulating encoding 
time and set size are quite common, 
any mixture of these factors with (for 
example) delay in memory (left graph in 
figure), or with how distinctive test items are 
compared to those in memory, influences 
performance (‘foil distinctiveness’; right 
graph in figure). However, these variables are not often manipulated 
in systematic ways because ‘resource’ models generally do not 
provide an integrative framework for understanding how these levers 
influence the availability of a resource or noise accrual.

Given these limitations, a fruitful direction for visual working 
memory research will be towards the study of long-term recognition 
and recall memory. In this domain, researchers often build 
integrative architectural models that describe processes that limit 
performance as a function of the particular encoding and retrieval 
manipulations for a given set of stimuli106,167,227, as opposed to 
using vaguer constructs such as capacity or limited resources. For 
example, considerations of how the distinctiveness of stimuli relates 

to the memory cues used will probably be useful in working memory 
research because the similarity of alternative items presented at test 
has an important role in shaping memory performance. Similarly, 
some stimuli spaces — such as real-world objects — have a higher 
upper bound on distinctiveness (right graph in figure) than those 
typically modelled (such as colours)107. Taking into account the 
full set of manipulations that affect performance, as opposed to 
heavily prioritizing the number of items that are simultaneously 
present, will lead to a deeper understanding of how visual memory 
representations are affected by task demands and provide a common 
framework for thinking about visual memory at different timescales.
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However, reducing the number of features that can be stored about 
an object, for example by using meaningless stimuli such as coloured 
shapes, also reduces how distinctive each object is in memory. This 
lack of distinctiveness leads to inter-item interference and confus-
ability at retrieval that inevitably reduces performance in work-
ing memory tasks, leading to an underestimation of both visual  
working memory performance and the role of knowledge in scaffolding 
such performance. Although such simple stimuli help to ensure the 
use of attentional maintenance, their use does not necessarily uncover 
the true architecture or computations on which these visual working 
memory tasks rely154–157.

Consider memory for Mooney faces, two-tone images that are 
sometimes perceived as a face and other times appear as a meaning-
less black and white blob (Fig. 4). In long-term memory, such stimuli 
have been used to show that recognition memory for exactly the same 
item can be improved when they are perceived as meaningful (as faces) 
versus not (as shape blobs)107,158. Later work built on this idea in the study 
of working memory, demonstrating that perceiving a Mooney face as 
a face rather than a meaningless blob improves working memory per-
formance and leads to an increase in the contralateral delay activity, 
a neural index of active maintenance engagement159. There are further 
examples in which visually identical stimuli are better remembered in 
working memory tasks when they can be processed in a way that con-
nects them to higher-level features or previous knowledge52,159–161. These 
benefits extend to visual working memory performance whenever prior 
knowledge and expertise can be used to scaffold memory162,163, such as 
for real-world objects164, famous faces165 and functional relationships 
between objects166. Overall, this pattern suggests that visual working 
memory, like visual long-term memory, is not based solely on percep-
tual features. Instead, more meaningful stimuli are better remembered 
than less meaningful stimuli, even when perceptually identical.

Complexity and meaning
In contrast to the predictions of rudimentary information-theory mod-
els, people are far better at representing complex, meaningful stimuli 
than simple meaningless stimuli, an idea that dates to very early work 

on ‘chunking’115 (Fig. 4a). Although this early work subscribed to very 
discrete views of chunking and capacity limits that are inconsistent with 
modern noise-based theories, its core message remains critical and 
underappreciated as an explanatory factor in visual working memory 
studies.

One explanation for the memory benefits of perceiving a meaning-
ful and complex, multidimensional stimulus159 is that doing so enhances 
the ability to extract features from that image. One specific hypothesis 
is that people are not completely flexible in their encoding, relying 
heavily on pre-learned features (for instance, using phonological fea-
tures to store both binary and decimal digits, rather than adaptively 
switching to a code that takes advantage of the additional compress-
ibility of binary digits126). Thus, when remembering an unfamiliar, 
meaningless image one can only encode it in terms of its low-level 
shape, spatial frequency, and other low-level and mid-level features 
(Fig. 4b). However, when perceiving the same stimulus as meaningful, 
one unlocks higher level visual features, such as face-specific features 
including eye position, age and nose angle. This additional complexity 
probably improves performance because each stimulus is more distinct 
from the other stimuli (Fig. 4c). This role of featural distinctiveness is 
usually modelled in the long-term recognition memory literature167 but 
rarely in working memory tasks. Furthermore, recognizing features at a 
higher level uncovers relations between features and makes it possible 
to efficiently encode and chunk multiple lower-level features jointly 
instead of separately, which also improves memory126,168.

Importantly, adding arbitrary features to an object does not improve  
memory performance when those features are not part of one’s library 
of pre-learned features. For instance, although scrambled or inverted 
stimuli can be more complex and perceptually rich than simpler 
single-feature stimuli, they do not offer the opportunity to make use 
of existing higher-level features in the same way as realistic, mean-
ingful stimuli presented in their pre-learned configuration. Indeed, 
memorizing more versus less visually complex meaningless stimuli 
hurts visual memory performance107,169,170. Therefore, the benefits of 
extracting additional features from a visual object are only observed 
with stimuli for which there are existing ways to encode high-level 
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capacity in bits). However, human performance remains relatively constant as 
complexity increases, as long as the information is meaningful, or capable of 
being scaffolded by previously acquired information. b, When inverted Mooney 

faces (meaningless stimuli) are maintained in memory, human performance is 
relatively poor compared to when the same faces are upright (and recognized  
as faces). One hypothesis is that existing high-level features that apply to 
perceived faces but not to shapes add meaningful dimensions to the stimuli, 
therefore making them more separable and robust to interference and noise 
(such as age of the face, shown on the z axis).
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visual and semantic information, but not for scrambled yet perceptually 
complex stimuli161,166. This concept is sometimes formalized in working 
memory as a kind of ‘model mismatch’127: stimuli that match an internal 
model of the world are easier to remember than those that do not.

As we elaborate below, the beneficial role of prior knowledge 
bridges many findings on how complexity and meaning can jointly 
improve visual working memory performance. These include benefits 
when multiple features are chunked into a single object as compared 
to separate ones88, better performance at remembering recognized 
Mooney faces than unrecognized Mooney faces159 and other aspects 
of model mismatch127, as well as improvements in working memory 
performance after learning which features tend to go together126. Con-
ceptualizing chunking in a more continuous way, consistent with noisy 
representations, remains an important goal for future work on visual 
memory171. Conceptions of chunking construed in terms of more sophis-
ticated formal models of information compression or rate-distortion 
theory126,128, which have the potential to take into account differential 
effects of stimulus complexity, will probably be critical to future pro-
gress in understanding these phenomena. Through this more contem-
porary lens, visual memory chunking can be seen as a form of ‘lossy’ 
compression of continuous multidimensional variables: compression of 
memory representations, resulting in some information loss by forming 
more efficient, more abstract representations that are linked to prior 
knowledge structures. More generally, although item-based theories 
have often been used to explain chunking in memory172–174, continuous 
theories of memory strength are equally compatible with the view 
that memory representations can be translated into more efficient 
formats, and that the common link between discrete-slot models and 
compressibility is historical rather than logical.

Elaborative encoding and hierarchical memories
The idea that recognizing and connecting an object to high-level vis-
ual and semantic features improves memory is closely related to the 
popular idea of ‘levels of processing’, which is more often studied for 
verbal than visual information175,176. According to this view, processing 
of stimuli at a ‘deeper’ level leads to more elaborated memory traces177. 
Such memory traces are then more distinctive178,179 and easier to retrieve 
because they are more connected to multiple distinct knowledge struc-
tures that can serve as retrieval cues175,180. Elaborative encoding in visual 
memory can occur when encoding semantic features, but also mid-level 
(such as shape) and high-level (such as the distance between two eyes 
on a face) visual features. Thus, the hierarchical structure of visual 
objects and scenes, in terms of low-level to high-level visual features 
and semantic information, can enable improved memory performance.

Currently, how the hierarchy of visual features scaffolds memory 
performance and improves the ability to remember realistic stimuli 
has not been explained by most models of visual working memory 
performance. Instead, even models that focus on prior knowledge 
tend to focus on memory capacity rather than memory representa-
tions (such as rate distortion or information-theory models, as dis-
cussed above). Thus, these models tend to focus on how performance 
varies as a function of the number of simple visual features shown. 
Important recent work has attempted to model representations of 
realistic stimuli using generative deep learning neural nets to capture  
how stimuli are represented at multiple levels of the visual hierarchy181. 
This model attempts to mimic the hierarchical structure of the ventral 
visual pathway, capturing the encoding of low-level (such as orienta-
tion) and mid-level (such as shape) visual features. Critically, by using 
recurrent feedback mechanisms, the model can be used to reconstruct 

important memory phenomena, such as more resource-efficient rep-
resentation of familiar items, and efficient recognition of novel objects 
that share high-level features with familiar items. These findings and 
related work182,183 highlight that interactions across the visual hierarchy 
are bidirectional, meaning that signals from early areas of the visual 
hierarchy influence representations at higher levels, and vice versa. 
Studying these interactions is an important step toward expanding 
models of visual working memory to account for a feature hierarchy.

In contrast to the visual working memory literature, the role of 
elaborative encoding and the availability of high-level or semantic 
features has more frequently been studied in the visual long-term 
memory literature. For example, the role of categories in memory,  
such as the finding that memories might be biased towards often- 
encountered instances of a category, suggests that semantic fea-
tures, in addition to perceptual features, play a substantial part in 
memory encoding184–186. Other work has also shown that normal, 
unmodified faces activate higher-dimensional neural representations 
(involving high-level face-processing regions) and result in better 
memory compared to modified faces187. The literature on memo-
rability also taps into these concepts. Memorability is based on the  
empirical finding that some stimuli are more often remembered 
successfully, compared to other — sometimes very similar — stimuli. 
Although this concept is sometimes labelled intrinsic memorability, 
classic memory theories175,178 would suggest that some stimuli are 
more memorable because they connect more directly to higher-level 
visual and semantic features, enabling more elaborative encod-
ing, and are therefore more distinctive (with a lowered summed 
similarity to the current memory set188), which is not an intrinsic 
property of the stimulus. Teasing apart the relative contributions of 
elaborative encoding and distinctiveness within the set of items in 
memory to the reliability of responses across individuals remains an 
active area of work in the memorability literature4,189.

In addition to the fact that features of a visual stimulus can be rep-
resented at multiple levels in the visual hierarchy (such as more per-
ceptual or more conceptual), there is an even stronger sense in which 
visual memory can be considered hierarchical. Visual memory might 
be fundamentally structured, with distinct representations at differ-
ent levels of abstraction. One reliable phenomenon that supports this 
view is that people’s memories are biased towards, but are not replaced 
with, their priors57,190,191. For example, memories for the size of specific 
instances of natural objects (such as fruits and vegetables) are biased 
towards the average size of the object categories (size of all apples) and 
superordinate categories (size of all fruits192; Box 1). This effect of priors 
on memory even holds in tasks in which priors are not informative for the 
stimulus selection process. For instance, people use knowledge of colour 
categories even in a task in which items’ colours are randomly chosen193 —  
such that even for extremely simple stimuli like coloured dots, visual 
memories naturally drift toward prior knowledge of colour categories194. 
More precisely, evidence suggests that people see certain hues of a 
colour as being more representative of the colour category and their 
memory will tend to drift towards these representative feature values.

In addition to memory depending on knowledge acquired before 
encoding, memories also seem to be encoded hierarchically within 
an episode. For example, when faced with sequences of items, in vis-
ual working memory or long-term memory tasks, people make use 
of similarity among multiple items to store abstractions and those 
abstractions influence subsequent memory for individual items195–197. 
For instance, scenes help to provide a structure to the objects within 
them, as shown by evidence that if people are presented with an array 
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of objects that are embedded within a scene, people encode both 
the ensemble structure of the entire scene in addition to individual 
items102,198,199. Similarly, when trying to remember real-world scenes, 
people encode the gist plus detailed information about some spe-
cific objects200,201. Moreover, they use the gist to guide their choice 
of which specific objects to remember202,203 and are influenced by 
the gist when later trying to recall the details of the scene, tending 
to remember objects that are consistent with the scene gist even if 
they were not present204–206. Even in randomly generated displays of 
simple colours, people are typically able to extract some spatial or 
feature-based structure from the display, which they use to encode the 
items with respect to each other rather than totally independently199. 
Finally, in some situations, people seem to encode relatively separate 
texture or ensemble information in addition to individual items and 
use it to alter their responses207.

In long-term memory, it is also thought that episodic memories 
are hierarchical. Episodic long-term memories integrate across several 
levels208 of storing both gist and detailed item information and trad-
ing them off34. These episodic memory processes flexibly integrate 
disparate components (including details and related information) of 
an autobiographical event into a coherent representation of the past 
or future208,209.

To summarize, visual memory in the real-world operates on mean-
ingful and familiar items, such as real-world objects and scenes. Memory 
for real-world objects is jointly but differently influenced by stimulus 
meaning and complexity. Meaning can bolster memory by distribut-
ing information across levels of the visual hierarchy, with memory for 
perceptual features influenced by and supported by memory for more 
abstract conceptual features. Added complexity can further scaffold 
memory by providing additional relational information that can be used 
to compress meaningful information, or serve as an additional retrieval 
cue. Likewise, such information is heavily influenced by prior knowl-
edge, which can adaptively bias memory representations to optimize 
memory performance. Collectively, the study of memory for meaning-
ful as opposed to meaningless, degraded visual information can help to 
ground theories and models of visual memory in the real world.

Summary and future directions
The visual system is usually conceived of in terms of a hierarchy of 
population codes, with representations that become more complex 
from the primary visual cortex up to more anterior visual regions. In this 
Review, we have suggested that a similar set of ideas can provide a useful 
mental model for understanding visual memory representations, with 
representations of objects or scenes conceived of as population-based, 
noisy (variable in strength) and stored in terms of hierarchical and 
distributed memory representations.

This conception of visual memory raises major challenges 
for measuring memory performance. In particular, modelling the 
decision-making process people use to integrate across an entire hierar-
chy of noisy representations will be critical to successfully measuring and 
understanding the memory representations themselves. In this context, 
a fruitful direction is to examine how model-based approximations of 
representations — such as those instantiated via convolutional neural 
nets210,211 or probabilistic models of knowledge structures212 — can yield 
insights into how continuous representations arise and are integrated 
across the visual hierarchy.

Greater synergy between the kinds of model and mechanism pro-
posed in visual working memory and visual long-term memory tasks 
will be critical to progress across both domains, but particularly in the 

domain of working memory. Existing working memory models are 
largely focused on manipulations of memory load for brief, simultane-
ous presentations of low-level visual features, and more cohesive models 
that use many of the same principles proposed in models of long-term 
memory are needed to examine and explain how encoding, delay, fre-
quency of item presentation, context, testing conditions213 and item 
influence visual working memory processes. Such modelling approaches 
could also help to illuminate the intersection between visual working 
and long-term memory and the role of limits on attentional protection 
of items from noise accumulation in real-world tasks. It is therefore also 
important to continue work that precisely defines — at the cognitive and 
neural level — how differences in ‘activation’ or attentional engagement 
can distinguish visual working memory and long-term memory.

Finally, a focus on precise quantification of memory representa-
tions in visual memory (as in continuous reproduction) and on research 
domains in which representations are well understood (such as per-
ception and other domains where neuroscience informs the precise 
representation structure of items) will enable the development of 
detailed computational models that can help to elucidate performance. 
However, it is also critical to consider that impoverished stimuli like 
single visual features do not capture the full breadth of scenarios where 
memory is used in the real world, and so models — particularly of visual 
working memory performance — must carefully consider the role of 
elaborative encoding of more realistic stimuli.

Published online: xx xx xxxx
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