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Traditionally, recognizing the objects within a scene has been treated as a prerequisite to recognizing the
scene itself. However, research now suggests that the ability to rapidly recognize visual scenes could
be supported by global properties of the scene itself rather than the objects within the scene. Here, we
argue for a particular instantiation of this view: That scenes are recognized by treating them as a global
texture and processing the pattern of orientations and spatial frequencies across different areas of the
scene without recognizing any objects. To test this model, we asked whether there is a link between how
proficient individuals are at rapid scene perception and how proficiently they represent simple spatial
patterns of orientation information (global ensemble texture). We find a significant and selective
correlation between these tasks, suggesting a link between scene perception and spatial ensemble tasks
but not nonspatial summary statistics In a second and third experiment, we additionally show that global
ensemble texture information is not only associated with scene recognition, but that preserving only
global ensemble texture information from scenes is sufficient to support rapid scene perception; however,
preserving the same information is not sufficient for object recognition. Thus, global ensemble texture
alone is sufficient to allow activation of scene representations but not object representations. Together,
these results provide evidence for a view of scene recognition based on global ensemble texture rather
than a view based purely on objects or on nonspatially localized global properties.

Public Significance Statement
People can recognize visual scenes rapidly and accurately, determining the meaning of complex
visual scenes in less than 1/10th of a second. Intuitively, we might expect such rapid scene
recognition to proceed from the bottom up: first we recognize objects, then the configuration of these
objects and then the entire scene. However, object recognition is not necessary for accurate scene
recognition, and people can rapidly recognize scenes even when they cannot recognize any individual
objects. Here, we provide evidence that 1 way the visual system performs this rapid non-object-based
scene recognition is by treating scenes as “textures” and looking at the distribution of orientations and
spatial frequencies across the entire scene at once.

Keywords: ensemble perception, statistical summary perception, scene recognition, navigation, visual
texture

People can recognize visual scenes rapidly and accurately, de-
termining the meaning of a complex scene in less than 100 ms
(Intraub, 1981; Potter & Faulconer, 1975; Thorpe, Fize, & Marlot,
1996). Intuitively, we might expect such rapid scene recognition to
proceed from the bottom up: First we recognize edges, then object
parts, then entire objects, and then we eventually recognize the
configuration of these objects and then the entire scene. Indeed,

classic models of vision have generally predicted such a structure
for visual recognition and treated objects and their relations as the
basic unit of visual scene recognition (e.g., Biederman, Mezza-
notte, & Rabinowitz, 1982; Marr, 1982).

However, object recognition is not necessary for accurate scene
recognition: people can rapidly recognize scenes even when they
cannot recognize any individual objectsp(Oliva & Torralba, 2006;
Schyns & Oliva, 1994). Furthermore, people can recognize global
features of a scene before they can identify the image category
(Greene & Oliva, 2009b), and these global properties, rather than
the objects present in a scene, seem to drive the confusions people
make between rapidly presented scenes (Greene & Oliva, 2009a).
This suggests that a representation of scene layout, independent of
objects, may play a major role in rapid scene recognition (Sanocki,
2003; Sanocki & Epstein, 1997). An important role for spatial
layout, rather than objects, is also consistent with the neural
evidence from regions of the brain that preferentially respond to
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scenes over individual objects, like the parahippocampal place area
(PPA; Epstein & Kanwisher, 1998). These regions are sensitive to
scene layout but considerably less sensitive to objects and other
scene content (Epstein, 2005; Park, Brady, Greene, & Oliva,
2011).

How could people recognize the meaning and spatial layout of
a scene rapidly without using objects? One possibility is that initial
scene perception occurs by rapidly encoding patterns of orientation
and spatial frequency across an image—effectively treating the
scene as a holistic entity and examining spatial variations in its
texture. Consistent with this proposal, computational models have
shown that the information present in the pattern of orientation and
spatial frequencies across an image is sufficient to categorize a
scene and to determine some global properties of the scene, in-
cluding its spatial layout (Oliva & Torralba, 2001, 2006; Ren-
ninger & Malik, 2004), and can explain the relative difficulty of
different scene categorization tasks (Sofer, Crouzet, & Serre,
2015). For example, Oliva and Torralba (2006) show that preserv-
ing the spatial frequency and orientation distribution of an image,
but pooling it across each quadrant of an image (e.g., in a 2 � 2
grid), is nevertheless sufficient to determine the natural or man-
made-ness of an environment, as well as any three-dimensional
(3D) perspective in the image (Ross & Oliva, 2010). Preserving
more spatial information (e.g., pooling separately in each cell of an
6 � 6 or 8 � 8 grid) additionally preserves the average depth of
the scene as well as the degree of openness (e.g., the extent to
which a horizon line is visible; Ross & Oliva, 2010). Thus, even a
very simple texture representation of a scene—a grid of spatial
frequency and orientation information—is computationally suffi-
cient to recognize significant information about the spatial layout
and 3D structure of a scene, even when little or no information

about individuated objects is preserved. Even very limited infor-
mation—for example, only the amplitude spectrum of a scene,
with no spatial information at all—can provide some information
about the scene (e.g., the amount of vertical orientation can cue
whether a scene is a city or a beach; Guyader, Chauvin, & Peyrin,
2004; see also Honey et al., 2008; Kaping, Tzvetanov, & Treue,
2007), although without spatial information, this seems to be
limited and not sufficient to recognize the scene gist (Loschky et
al., 2007). In addition, the amplitude spectrum alone cannot ac-
count for even the human ability to perform basic distinctions like
natural versus man-made, which can be performed rapidly and
accurately even with image sets where the amplitude spectrum has
been equated (Joubert, Rousselet, Fabre-Thorpe, & Fize, 2009).
Thus, spatial information being preserved is critical to recognizing
scenes based on texture properties.

Are people actually sensitive to patterns of orientation and
spatial frequency information across an image? The literature on
“spatial ensemble perception” argues that people are able to com-
pute spatial distributions of low-level features very quickly and
efficiently, at least in simple displays. For example, people can
efficiently compute the distribution of orientations in the top and
bottom of a grid of Gabor elements (Alvarez & Oliva, 2009), or the
spatial distribution of simple color squares (Brady & Tenenbaum,
2013) and seem to store and use this information (e.g., Brady &
Alvarez, 2015). People can also compute these spatial ensemble
statistics when attention is diffusely spread (Alvarez & Oliva,
2009) and in their periphery (Balas, Nakano, & Rosenholtz, 2009),
consistent with a role in scene recognition. These spatial ensemble
patterns, while made up of simple elements like Gabors, neverthe-
less closely mimic the patterns of orientated elements used in
computer vision algorithms to holistically recognize scenes (e.g.,

Figure 1. One way for participants to recognize a scene would be to make use of global ensemble texture
information, like the distribution of orientations and spatial frequencies, which has been shown to be compu-
tationally sufficient to recognize the spatial layout and category of a scene (e.g., Ross & Oliva, 2010); for
example, features like perspective, depth of view, and other spatial layout characteristics. For example, a scene
can be transformed into only loosely localized information about its spatial frequency and orientation distribu-
tion, which can then be transformed into information about the 3D layout and category of the scene. See the
online article for the color version of this figure.
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Oliva & Torralba, 2006), raising the question of whether human
sensitivity to these patterns in simple displays, like grids of Ga-
bors, arises because of their role in allowing for rapid recognition
of the spatial structure of scenes (e.g., Figure 9 in Brady, Konkle,
& Alvarez, 2011).

In addition to this spatial ensemble information, people are also
sensitive to even simpler, nonspatial ensemble information, like
the mean and variance of basic feature dimensions (often referred
to as summary statistics). For example, participants can rapidly
extract the mean size of a set of circles (Ariely, 2001; Chong &
Treisman, 2003) or the average emotion of a set of faces (Haber-
man & Whitney, 2007). Whereas the representations required to
perform spatial ensemble tasks must preserve spatial information
(e.g., the top is mostly horizontal; bottom is mostly vertical;
Alvarez & Oliva, 2009), summary statistics do not. While com-
putation of summary statistics requires pooling information across
space, it does not involve the recognition of spatial patterns, since
all information must be pooled into a single representation of the
average. Although it has been proposed that scene recognition
relies on such summary statistic processing (e.g., Wolfe, Võ,
Evans, & Greene, 2011, p. 81), representing properties such as
spatial layout requires the preservation of how information is
distributed across space. Thus, it remains to be determined how
related these nonspatial summary statistic representations are to
scene recognition.

Here we examine the role of such summary statistics, spatial
ensemble statistics, and similar global ensemble texture represen-
tations in visual scene recognition. In a first experiment, we use an
individual differences design to show that the same participants
who perform best on a spatial ensemble task also show the most
activation of scene representations in brief displays. This suggests
a link between spatial ensemble processing and rapid scene rec-
ognition. However, we find no relationship between nonspatial
summary statistics and scene recognition. In a second experiment,
we show that preserving only global-ensemble-texture information
(in particular, a spatial distribution of orientations and spatial
frequencies) in scenes is sufficient to allow participants to activate
scene representations. In a third experiment, we show that this link
between spatial ensembles and scenes is selective: Preserving the
same information in images of objects is insufficient to allow
activation of object representations. Overall, our data provide
evidence for the role of rapid global ensemble texture processing
in rapid scene recognition, as well as suggesting the spatial en-
semble tasks may tap into these same global ensemble texture
processing mechanisms.

Experiment 1: Individual Differences

In Experiment 1, we examine the relationship between rapid
scene recognition, spatial ensemble perception, and summary sta-
tistics in simple displays using an individual differences approach.
Specifically, we ask whether skill at spatial ensemble processing
predicts individual participants’ rapid scene recognition ability
above and beyond general factors, like motivation, working mem-
ory capacity, and nonspatial summary perception.

As a measure of spatial ensemble processing, we use a modified
version of a task developed by Alvarez and Oliva (2009). Partic-
ipants have to detect changes to a grid of high spatial frequency
Gabor elements while their attention is diffusely spread (so they

cannot focus on the individual Gabor elements). Sometimes noth-
ing changes; sometimes all the individual elements rotate, but
these changes do not change the global structure of the display;
and sometimes all the individual elements rotate and these changes
also affect the global structure/ensemble of the display (see Figure
2A). We ask whether participants who are particularly sensitive to
the ensemble structure changes are the same participants who are
best at rapid scene recognition.

As a measure of rapid scene recognition, we use the object
recognition task of Davenport and Potter (2004). We ask partici-
pants to recognize objects, and these objects can appear on top of
informative scene backgrounds (e.g., a priest in a church), or on
top of uninformative scene backgrounds (e.g., a priest on a football
field). The only difference between conditions is the scene back-
grounds, and thus any benefit to object recognition from informa-
tive scenes must be driven by participant’s rapid scene recognition
ability. We chose this task rather than a direct measure of scene
recognition because a task where naming scenes was directly
relevant would need to use extremely brief presentations with
strong dynamic masks (e.g., a single frame; Greene & Oliva,
2009b), and we found in pilot experiments that individual differ-
ences in scene recognition were swamped in such tasks by the
vigilance and motivational factors that are prevalent in such tasks.
Furthermore, the object recognition literature has shown robust
effects of background scenes on object recognition (e.g., Bieder-
man et al., 1982; Boyce & Pollatsek, 1992; Boyce, Pollatsek, &
Rayner, 1989; Davenport & Potter, 2004; although see Holling-
worth & Henderson, 1998, 1999), and scenes are known to rapidly
influence objects in such object recognition tasks (e.g., Joubert,
Fize, Rousselet, & Fabre-Thorpe, 2008). Thus, the facilitation of
object recognition by scenes can be usefully used as a measure of
rapid scene processing.

Finally, we also measured participants’ ability to compute non-
spatial summary statistics: in particular, the average orientation of
a set of Gabor elements. People are able to quickly and accurately
report summary statistics across sets of objects: for example, the
average orientation of a set (Dakin & Watt, 1997; Parkes, Lund,
Angelucci, Solomon, & Morgan, 2001) or the average size of a set
(Ariely, 2001; Chong & Treisman, 2003; see Alvarez, 2011 for a
review). These tasks do not require the preservation of spatial
information, and thus are distinct from spatial ensemble tasks as
well as from the texture representations that have been used in
computational models of scene perception (e.g., Oliva & Torralba,
2001, 2006). Because the task is, however, dependent on the global
spread of attention and the processing of multiple Gabor elements,
it serves as a control condition for the spatial ensemble task—it
allows us to disambiguate the role of spatial information and
global ensemble texture patterns, which are present in the spatial
ensemble task but not present in the summary statistic task, from
the role of processing multiple Gabor elements and spreading
attention globally, which are present in both tasks. It also allows us
to examine whether even such summary statistic tasks might be
related to scene recognition, as has been claimed (e.g., Wolfe et al.,
2011).

Method

Participants. Fifty individuals (age range 18–35) from the
Cambridge, MA, and Harvard University community participated.
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All participants gave informed consent and had normal or
corrected-to-normal vision. All individuals completed each of our
three conditions to allow us to examine how performance on
different tasks correlates across individuals. This enables us to ask
whether these tasks could be supported by the same underlying
mechanism or whether they must be supported by independently
operating mechanisms (e.g., Vogel & Awh, 2008; Wilmer, 2008).

Spatial ensemble processing measure. Participants per-
formed 200 trials of a change-detection task in which an 8 � 8 grid
of Gabor patches (50% contrast; �2 cycles/deg; each subtending
1° � 1°) was briefly flashed (250 ms) and then reappeared (300 ms
later). The patches were aligned so that the top of the screen
consisted of nearly vertical items (�22.5° from vertical) and the
bottom consisted of nearly horizontal items (�22.5° from hori-
zontal), or the opposite pattern (vertical bottom, horizontal top; see
Figure 2A). When the grid reappeared, 50% of the time all of the
patches’ orientations were identical. The other 50% of the time,

they had all rotated by 45°. On 50% of change trials, these 45°
rotations altered the global pattern of orientations in the display
(local � ensemble changes; e.g., the top went from roughly ver-
tical to horizontal and bottom from horizontal to vertical). The
other half of the time, the global pattern remained the same despite
each element rotating by 45° (local-only changes; e.g., the top
remained roughly vertical and bottom remained roughly horizon-
tal). The amount of local change to each Gabor was identical in the
local � ensemble change condition and the local-only change
condition—the only difference between these two conditions is
the presence of an ensemble change. To the extent that participants
are sensitive to the ensemble structure, it should be easier to notice
changes on local � ensemble trials than local-only trials (see
Alvarez & Oliva, 2009 for a similar task and logic).

Each trial started with a distractor task that encouraged partic-
ipants to spread their attention globally rather than focusing on
particular elements: Every 150 ms a character appeared at a

Figure 2. Methods for the three parts of Experiment 1. (A) In the spatial ensemble task, participants had
to detect changes to a grid of Gabor elements that appeared at an unexpected time for a brief duration while
they performed another task (counting digits). The grid of Gabors appeared briefly, then disappeared. When
the display reappeared after a brief blank, it could sometimes be identical to before the blank (no change);
or all of the individual Gabor elements could have rotated by 45° (change trials). On every change trial, all
of the individual Gabor patches rotated by 45°, but on local-only trials (left), the way the elements rotated
kept the ensemble structure the same (vertical on top, horizontal on bottom), whereas on local � ensemble
trials (right), the 45° rotations changed the ensemble structure; for example, in the example in the figure,
the top is now horizontal and the bottom vertical. The Gabors in these example displays are larger and have
higher contrast than the Gabors used in the actual experiment. (B) In the rapid scene recognition task,
participants saw a briefly flashed object on top of an irrelevant scene background (84 ms) followed by a
mask for 200 ms. They then had to type the name of the object. On some trials, the scene background was
informative because it was consistent with the object (left), whereas on other trials the scene background
was uninformative (right). The difference between these conditions provides a selective measure of scene
processing, as only the scenes differ between the conditions. (C) In the summary statistic task, participants
saw a grid of four Gabor elements for 1 s and had to remember the average orientation of the set during
a 1-s delay and then report it by adjusting a Gabor to match this average orientation using the mouse. See
the online article for the color version of this figure.
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random location on the screen (six to 11 characters), and partici-
pants had to count how many of these characters were digits (vs.
letters). After an unpredictable number of characters, rather than a
digit or letter appearing, the grid of Gabors appeared. Participants
responded to the Gabor task first (change/no change), but they
were instructed to focus primarily on the digit task to ensure that
they kept their attention globally spread.

To assess performance on the change detection task, we calcu-
lated d= to quantify participants’ sensitivity to the changes in the
local-only and local � ensemble conditions. We then calculated an
ensemble benefit score by using regression to remove performance
with local-only changes from performance with local � ensemble
changes.

We used regression, not subtraction, because this results in an
ensemble benefit score that has no correlation with performance in
the local-only condition and a positive correlation with perfor-
mance in the local � ensemble condition. In our task, where the
presence of ensemble changes is likely to be helpful to perfor-
mance but their absence is not actively negative for performance,
this is the more valid analysis technique (e.g., DeGutis, Wilmer,
Mercado, & Cohan, 2013; Ross, Richler, & Gauthier, 2014).1 Note
that by regressing out performance in local-only from performance
in local � ensemble, we also eliminate effects of motivation,
change detection ability and other general factors from our ensem-
ble benefit score. This is because these factors are present in the
local-only condition as well as the local � ensemble condition. We
performed the regression on z-scored values of d= so that the
resulting coefficients are comparable across our tasks.

Rapid scene recognition measure. Our rapid scene recogni-
tion measure was based on the task employed by Davenport and
Potter (2004). We presented participants with quickly flashed
images of objects on top of scenes, and they had to report the
identity of the object in a free response format. To the extent that
participants are quicker and more accurate at rapid scene rec-
ognition, they should have higher accuracy for informative
scene backgrounds (e.g., a priest in a church) than uninforma-
tive scene backgrounds (e.g., a priest on a football field). The
objects are identical in the two conditions and only the useful-
ness of the scene differs, so this comparison, despite partici-
pants being asked about objects and not scenes, provides our
index of rapid scene recognition.

We used 27 images of objects and 27 images of backgrounds
combined into 27 informative and 27 uninformative object-
background pairs (from Davenport & Potter, 2004; see Figure 2B).
Each participant completed 54 trials, with each trial consisting of
one object-background pair. Trials began with a fixation cross, and
then the image (�28° � 17°) was presented for 84 ms, followed
by a mask for 200 ms. Then participants had to type the name of
the object they had seen. The masks consisted of checkerboard-
scrambled versions of scenes. The same objects appeared twice for
each participant, once on an informative background and once on
an uninformative background. We counterbalanced the stimuli so
that half of the objects appeared first in an informative background
and half in an uninformative background.

Participants’ responses were scored as correct only if they
named the exact object (e.g., “priest” or “pope” or “religious
figure,” not just “man”). This scoring was done by two indepen-
dent coders without knowledge of the condition represented by

each response. The two coders’ scores were in strong agreement,
as they agreed on the correct/incorrect judgment of 96.8% of trials.

We calculated a scene benefit score by using regression to
remove participants’ performance on trials with the uninformative
scenes from their performance on trials with the informative
scenes. This regression also eliminates effects of motivation, ob-
ject processing ability and other general factors from our scene
benefit score. We performed this regression on z-scored values of
percent correct. Using regression in this case is justified if the
informative backgrounds are helpful for recognizing the objects,
whereas uninformative backgrounds are unhelpful (rather than
actively misleading). If uninformative backgrounds were actively
misleading, then subtraction would be the preferred analysis tech-
nique (e.g., we should derive the scene benefit score from sub-
tracting performance in the uninformative condition from perfor-
mance in the informative condition). To disambiguate these, we
would need a “neutral” condition. However, no neutral condition is
feasible—there is no such thing as a scene that is exactly like other
scenes, but makes no predictions at all about what objects are most
likely to be present. Previous work has presented the objects
without backgrounds (e.g., Davenport & Potter, 2004), but no-
background conditions (or 1/f noise) make segmenting the object
from the background much easier than it is in normal scenes.
Consequently, these conditions are not truly neutral, but instead
are significantly easier than conditions with true scenes. Because
most objects can appear in most situations (e.g., none of the scenes
is a physically impossible place for any of our objects), it seems
most consistent to use regression, and we use that as our main
measure. However, we report the effects using both regression and
subtraction to show that the choice of analysis method is not
critical to the conclusions.

Object-based summary statistics measure. This task was
designed to measure participants’ skill at computing summary
statistics and was based on the task employed by Haberman,
Brady, and Alvarez (2015). Participants completed 60 trials of a
task where they had to report the average orientation of a grid of
four Gabor patches (see Figure 2C).

Each display consisted of four oriented Gabors (�1 cycles/deg)
varying in orientation. The four items were always �5° and �15°
from the mean orientation, which was chosen randomly on each
trial. Each Gabor was located approximately 3° from fixation and
subtended approximately 3.5°. Participants saw the display of
Gabors for 1 s and then after a 1 s delay, a test item appeared at the
center of the screen. They had to adjust this item to reflect the
average orientation of the set using their mouse. On each trial,
we can compute an error measure as the angle, in degrees, between
the correct response and participants’ response, resulting in a
distribution of errors across trials. We then fit a mixture model of
a von Mises distribution and a uniform distribution to these error
distributions using the MemToolbox (Suchow, Brady, Fougnie, &
Alvarez, 2013), as is common in visual working memory experi-
ments (e.g., Zhang & Luck, 2008). The standard deviation of this

1 In general, whether to use regression or subtraction depends on the
task: If one condition is a true baseline, and the other condition only adds
a factor on top, then regression is preferred (as in the current experiment).
If one condition has a factor and the other has a negative version of that
factor (e.g., if our local-only condition instead had actively misleading
ensemble information), then subtraction is the more valid technique.
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von Mises distribution (z-scored) was our measure of fidelity. This
mixture model approach allowed us to assess the fidelity of par-
ticipants’ summary statistic computation independent of any lapse
trials, which helps make our measure independent of participants’
motivation level. While this model-based approach provides a
more realistic measure of participant’s ability to compute summary
statistics, all of the same qualitative conclusions hold if we analyze
mean absolute error without removing lapse trials.

Results

Main effects. Participants performed well in the spatial en-
semble task, with 90.3% correct in the distractor digit counting
task (S.E.M.: �0.7%), and, looking at only trials with a correct
digit response, a mean d= of 1.1 (S.E.M.: �0.1) in the local-only
change detection condition and of 2.6 (�0.2) in the local �
ensemble change condition. The difference between these two
conditions was reliable, suggesting participants did, on average,
take advantage of the ensemble structure, t(49) � 12.7, p �
0.0001, Cohen’s d � 1.8; see Figure 3A.

In the rapid scene recognition task, participants accurately rec-
ognized 72.1% (�1.8%) of the objects on the uninformative back-
grounds but recognized 79.4% (�1.7%) on the informative back-
grounds, a reliable effect of the scene background, t(49) � 8.5,
p � .0001 (see Figure 3B). Despite being a relatively small effect,
this difference was highly consistent across participants, with a
Cohen’s d of 1.2 and with only 3/50 participants showing better
performance with uninformative than informative backgrounds.

In the summary statistic task, participants had an average fidel-
ity of 13.7° (�0.62°, measured as the standard deviation of the von
Mises distribution; see Figure 3B), with a lapse rate of 8.3%
(�2.5%). Looking at all trials, rather than using the mixture
model, and computing average absolute error rather than fitting a
distribution, gives an average error of 14.6° (�1.3°).

Reliability. Our primary interest is in the degree to which our
different measures correlate with one another. However, the cor-
relation observed between two variables is limited by the reliabil-

ity with which those variables are measured. Thus, we first as-
sessed the reliability of all of our measures using Spearman-Brown
corrected split-half reliability (Brown, 1910; Spearman, 1910). All
of our measures were highly reliable: Participants’ performance at
object-recognition on informative and uninformative backgrounds
(r � .95, r � .93, respectively), d= for local-only and local �
ensemble change detection (r � .95, r � .86), and fidelity and
lapse rate in the summary statistic task (r � .85, r � .86) all had
reliability estimates greater than 0.85. Thus the maximum observ-
able correlations between our tasks range from 0.85 to 0.92 (Nun-
nally, 1970).

Correlations between tasks. Our main question of interest is
the extent to which summary statistic processing and spatial en-
semble processing are related to rapid scene recognition. To mea-
sure this, we used our scene benefit score, calculated by regressing
performance with uninformative scenes out of performance with
informative scenes (see Method section), our ensemble benefit
score, calculated by regressing local � only performance out of the
local � ensemble performance, and our measure of fidelity in the
summary statistic task, calculated by removing lapse trials and
calculating the standard deviation of participants’ remaining re-
ports.

We find that participants’ ensemble benefit score is a significant
predictor of their scene benefit score (r � .46, r2 � 0.21, p � .001;
see Figure 4A). In other words, the same participants who are good
at detecting changes to the spatial ensemble structure are the
participants who benefit most from informative scenes in an object
recognition task. Because we regressed out performance at closely
matched control conditions (e.g., uninformative scenes and local-
only changes), this relationship cannot reflect motivation, general
skill at object recognition or other general factors. Thus, 21% of
the variance in our measure of rapid scene recognition can be
explained by participants’ sensitivity to the spatial structure of
oriented Gabors, consistent with the hypothesis that rapid scene
recognition is supported by global ensemble texture processing of
a scene.

Figure 3. Main effects across all 50 participants for the (A) spatial ensemble task (d= at detecting changes), (B)
scene task (percent correct in recognizing objects), and (C) summary statistic/mean orientation task (standard
deviation of participant’s reports, as estimated from the mixture model). Error bars represent within-participant
standard errors of the mean.
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By contrast, we find no significant relationship between perfor-
mance at our summary statistic task and participants’ scene benefit
score (r � �0.14, r2 � 0.02, p � .35; Figure 4B) or ensemble benefit
score (r � �0.15, r2 � 0.02, p � .30; Figure 4C). Thus, despite
making use of the same local elements (Gabors) and requiring both
integration over multiple elements and a diffuse spread of attention, a
simple summary statistic computation does not appear to be tied to
rapid scene recognition or to the more texture-based spatial ensemble
task (as it explains less than 2.3% of the variance in each). This result
requires some revision to the assumption that all “ensemble” tasks tap
a similar ability, and suggests that spatial ensemble tasks may be more
directly related to scene recognition.

If we use subtraction rather than regression to calculate the
scene congruency effect (see Method section), we still find no
relationship between the summary statistic task and participants’
scene benefit score (r � �0.00, r2 � 0.00, p � .99), and a
significant relationship between the ensemble benefit score and the
scene benefit score (r � .28, r2 � 0.08, p � .048).

Discussion

Participants who were most sensitive to changes in spatial
ensemble structure were also the participants most influenced by

scene backgrounds in an object recognition task. This provides
support for the hypothesis that spatial ensemble representations, or
global ensemble texture more broadly, partly underlies rapid scene
recognition. By contrast, computation of object-based summary
statistics (i.e., average orientation) did not relate to scene recog-
nition, as measured by our tasks, despite the similarity in the Gabor
stimuli used in the spatial ensemble task and the summary statistic
task and the need for selection of all of the items in both tasks.

Broadly speaking, this provides evidence for a global view of
rapid scene recognition, where information about a scene’s spatial
layout is computed primarily based on the rapid encoding of
patterns of orientation and spatial frequency across an image (e.g.,
Oliva & Torralba, 2006). These findings also highlight the strength
of individual differences research for linking computational theo-
ries with cognitive models, and open the door to using individual
differences to further examine the relationship between cognitive
and neural models of scene perception. Our data also argue for a
particular instantiation of a global scene recognition: a represen-
tation based on the spatial distribution of orientation and spatial
frequency across a scene; as opposed to a global scene represen-
tation based on low-frequency information (e.g., Schyns & Oliva,
1994) or nonspatially localized global properties (Greene & Oliva,
2009a). The layout information in these displays is carried by high
spatial frequencies, not low spatial frequencies (e.g., if you blur
these displays, you get a uniform gray field), suggesting the
distribution of high spatial frequency information is critical, not
low spatial frequency information. In addition, because they are
not semantically meaningful, these spatial ensemble displays do
not have properties like temperature or navigability (Greene &
Oliva, 2009a). Thus, the connection we find between the spatial
ensemble task and scene processing provides evidence that the
spatial distribution of orientation at relatively high spatial frequen-
cies—as used in computer vision models of spatial layout proper-
ties (Ross & Oliva, 2010)—is related to scene recognition.

We controlled for general factors like motivation, working
memory capacity, and object recognition by using a design with
paired conditions. We also showed that not all global attention
tasks correlate with rapid scene recognition, even ones dependent
on very similar sets of Gabor elements, like our summary statistic
task. This suggests that the relationship we observe with scene
recognition is selective to the processing of spatial patterns. By
contrast, summary statistic tasks like the average orientation of
Gabors seem to have the majority of their individual differences
explained by participant’s precision at processing the individual
Gabors themselves (e.g., Haberman, Brady, & Alvarez, 2015).

Nevertheless, individual differences are relatively indirect; a
more direct measure would provide stronger evidence of a link
between patterns of orientation and spatial frequency in an image
and rapid scene recognition. Thus, in Experiment 2 and 3, we
directly manipulate images in order to preserve only global en-
semble texture information and ask whether this is sufficient to
drive scene recognition (but not object recognition).

Experiment 2: Sufficiency of Global Ensemble Texture
for Scenes

In a second experiment, we ask whether preserving only global
ensemble texture information but eliminating the semantic mean-
ing of scenes is still sufficient to activate scene representations.

Figure 4. Results. (A) Participants’ performance for local � ensemble
after controlling for their performance on local-only changes (ensemble
benefit) was a strong predictor of their performance recognizing objects in
informative scenes after controlling for their performance with uninforma-
tive scenes (scene benefit). The same participants who benefited most from
ensemble changes in the spatial ensemble task with Gabors were also the
ones who benefited most from informative scenes. (B) The orientation
summary statistic task, by contrast, did not significantly correlate with
either the scene benefit or the ensemble benefit.
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Our primary manipulation is to “texturize” the scenes; that is, to
eliminate all semantic information in the scenes and render them
unrecognizable, and preserve only a small part of the spatial
distribution of orientation and spatial frequency (see Figure 5 e.g.,
stimuli). In particular, we preserve only the power at four spatial
frequencies and six orientations in a 6 � 6 spatial grid. This
discards approximately 99.5% of the information from the original
scenes,2 but preserves the limited set of spatial information about
orientation and spatial frequency that we have proposed is critical
for some aspects of scene recognition.

To measure scene recognition with texturized scenes, we once
again use a task based on Davenport and Potter (2004). In partic-
ular, we ask whether participants are better at recognizing objects
that follow textures derived from informative scenes (e.g., those
that fit with the objects) as opposed to textures derived from
uninformative scenes. This would be expected only if this texture
information preserves sufficient information to drive the scene
processing pathway and activate relevant scene representations to
a sufficient extent to allow for the priming of relevant objects
(perhaps based on the spatial layout of the scene, which is known
to be available in such texture information; e.g., Ross & Oliva,
2010).

We modified the paradigm used in Experiment 1, in this case
presenting the scenes before the objects-to-be-recognized, and thus
having the scenes serve as primes for the objects (as in Palmer,
1975), rather than having the objects embedded in the scenes (as in
Davenport & Potter, 2004). We did this because (a) the objects are
easier to segment from texturized backgrounds (making the task
too easy in some cases); and (b) because inserting objects into
scenes changes the global scene statistics of the images, and the
presence of consistent versus inconsistent objects tends to change
the global image features differently (e.g., Banno & Saiki, 2015;
Gaspar & Rousselet, 2009; Mack & Palmeri, 2010). By keeping
the scenes intact without occluding them with objects, we allow
participants to process the scene statistics without interference
from overlapping objects.

To gauge the level of performance using texturized-scenes, we
first ran a version of the experiment using nontexturized scenes. In
Experiment 2A, we asked participants to recognize objects follow-
ing intact grayscale scenes that were either informative or unin-
formative about the identity of the objects. In Experiment 2B, we
asked participants to recognize the exact same objects, but now
following texturized versions of the same scenes, which preserved
only the distribution of orientation and spatial frequency informa-
tion, but which were unrecognizable at the basic-level (e.g., oven,
tennis court).

Method

Participants. Fifty participants were recruited on Amazon’s
Mechanical Turk for Experiment 2A (with nontexturized scenes).
We expected a smaller effect size in Experiment 2B (with textur-
ized scenes), so 100 participants were recruited for Experiment 2B.
All participants were from the United States, were over 18, and
gave informed consent in accordance with the procedures and
protocols approved by the Harvard Committee on the Use of
Human Subjects. Turk users form a representative subset of adults
in the United States (Berinsky, Huber, & Lenz, 2012; Buhrmester,
Kwang, & Gosling, 2011), and data from Turk are known to

closely match data from the lab on visual cognition tasks (Brady &
Alvarez, 2011; Brady & Tenenbaum, 2013). All participants indi-
cated they had normal or corrected-to-normal color vision. All
participants were paid $1 for several minutes of their time and
none of the participants participated in multiple experiments (all
participants are identified by a unique ID by Amazon).

Stimuli. Stimuli consisted of the 27 object-scene pairs from
Experiment 1 (taken from the set created by Davenport & Potter,
2004), augmented by 23 additional pairs to create 50 informative
object-scene pairs. Each object and scene was also paired with a
different object and scene to create uninformative object-scene
pairs, as in Experiment 1 and Davenport and Potter (2004). In this
experiment, the scenes did not contain the objects, but instead were
separate images. The objects and scenes were both presented in
grayscale to remove color as a cue. In addition, the objects were
presented on 1/f noise backgrounds to make it more difficult to see
and categorize the objects (see Figure 5). The scenes were a
mixture of indoor, outdoor, and urban places, and were paired with
objects of various kinds (animals, people, things), at different sizes
(from close views of an oven or desktop to large-scale views of a
mountain). In particular, the stimuli consisted of: airport (pilot);
barn (tractor); basketball court (basketball player); a bathroom
(tub); bathroom counter (a comb); battle ground (soldier); baseball
field (mitt); beach (surfer); bowling alley (bowler); cemetery
(gravestone); church (priest); desert (cactus); football field (foot-
ball player); field (buffalo); fire station (fireman); forest (deer);
grass (butterfly); hallway (table); helipad (helicopter); hospital
(doctor); ice rink (figure skater); kitchen (knife); library (student);
living room (couch); mountain trail (donkey with rider); mud pit
(pig); NASCAR racer track (racecar); NFL football game (ref-
eree); ocean (fish); inside of oven (pie); parade (trumpet player);
parking lot (car); path in a park (jogger); ping pong table (paddle);
resort (a boat); restaurant kitchen (chef); rocks/stones (penguin);
sand (sandcastle); savannah/field (zebra); a ship’s deck (life pre-
server); the sky (hot air balloon); snowy hill (sled); space (earth/
stars); (space shuttle); a street (flat view, a biker); a supermarket
(shopping basket); a tennis court (racket); a theater (ballerina); a
racehorse track (race horse with jockey); a street (perspective
view, a truck); and underwater (turtle).

In Experiment 2A, the unmanipulated scenes were presented. In
Experiment 2B, they were first “texturized,” using the algorithm of
Oliva and Torralba (2006). In particular, the images were divided
up into a 6 � 6 grid, and in each grid cell the power was estimated
at four spatial frequencies by six orientations. This reduces the
hundreds of thousands of pixels of information in an image to just
864 numbers, discarding approximately 99.5% of the information
in each image when the image is (naively) coded in pixels. Under
any coding algorithm, the image ends up highly compressed and
most information is discarded. Then, a random white noise image
was generated, and this image was iteratively coerced to have the
same distribution of orientations and spatial frequencies in each
cell as the original image did. At each iteration, the noise is
decomposed using a bank of multiscale-oriented filters and the

2 While pixels are a poor measure of information, this reduces the
simplest representation of the stimuli from 150,000–300,000 numbers (px)
to 864 numbers (six orientation/four spatial frequencies in a 6 � 6 grid);
and, under any encoding model, is a significant compression of the stimuli.
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magnitude output of the filters is averaged over each grid cell,
then these features are modified to more closely match the 4 �
6 spatial frequency/orientation features of the target image in
each cell. Through an iterative process, the noise image more
and more closely matches the statistics of average orientation/
spatial frequency of the original image in each of the 6 � 6
cells. Before applying the iterative adjustment to the white
noise image, the adjustment factor for each of the 6 � 6 cells is
scaled up to the original size of the image with bicubic inter-
polation, resulting in some smoothing, which is why the images
do not display grid artifacts.

This texturized version of the scenes preserves most of the
orientation and spatial frequency information from the original
image, but their spatial organization is only loosely preserved. This
destroys the majority of the recognizable features of the image but
preserves some information about the spatial layout of the scene
(e.g., Oliva & Torralba, 2006; see Figure 5B).

We ensured that the images were no longer recognizable as a
basic-level (e.g., kitchen, forest, etc.) by running a control exper-
iment in which 30 naïve participants were shown these images and
asked via free response to guess what kind of image they were
generated from or most closely resembled. Participants could not
succeed at this task. Even with very liberal grading criteria, only
3.4% of the images were recognized, and this was largely due to
participants’ tendency to guess the same answer for many images
(e.g., people called many of the images beaches, even when this
was incorrect). To demonstrate this, we shuffled the labels and
images relative to each other so the labels were graded with
different scenes than the participants saw; 2.9%–4.8% of the labels
were still judged as correct across each of three random shuffles.
Thus, it is unlikely any of the responses reflected true recognition
of the scenes, as a similar percent correct was found with the
correct labeling or with shuffled labels. Thus, the texturized im-
ages were generally unrecognizable at the basic-level.

Procedure. We presented participants with images of scenes
(2A) or texturized scenes (2B) for 500 ms, followed by briefly
flashed object images for 100 ms, and then a mask (the same
masks used in Davenport & Potter, 2004 and in Experiment 1).

Participants then had to report the identity of the object in a free
response format. Each participant saw all 50 objects, with half
paired with an informative scene and half paired with an uninfor-
mative scene (2A) or a texturized version of those same scenes
(2B). To the extent that the prime scenes/textures drive partici-
pant’s scene recognition system and thus prime the relevant ob-
jects, participants should have higher accuracy when preceding
scenes or textures contain informative versus uninformative infor-
mation. The objects are identical in the two conditions, and only
the usefulness of the prime scene/texture differs—so this compar-
ison, despite participants being asked about objects and not scenes,
provides our index of whether the prime scenes/textures success-
fully drive the scene recognition system. By using texturized-
scenes, Experiment 2B allows us to ask if the same informative
scene benefit is present even when only a simple distribution of
low-level information is preserved: for example, enough to provide
information, at least in theory, about the spatial layout of the scene
(e.g., Ross & Oliva, 2010), but without any basic-level recogni-
tion.

As in Experiment 1, participants’ responses were scored as
correct only if they named the exact object (e.g., “priest” or “pope”
or “religious figure,” not just “man”). This scoring was once again
done without knowledge of the condition represented by each
response (e.g., blind to condition).

Results

In Experiment 2A, with meaningful scenes as primes, partici-
pants accurately recognized 72.7% (�2.2%) of the objects primed
by uninformative backgrounds but recognized 82.4% (�2.2%)
primed by the informative backgrounds, a reliable effect of the
scene’s informativeness, t(49) � 7.91, p � .0001 (see Figure 6A).
Thus, the benefit of informative scenes on object recognition (e.g.,
Davenport & Potter, 2004) replicates even with grayscale scenes
(see Munneke, Brentari, & Peelen, 2013) and even with the scene
as a prime rather than with participants having to segment the
object from the scene (e.g., Palmer, 1975).

Figure 5. Methods of (A) Experiment 2A, (B) Experiment 2B. In both experiments, a grayscale prime scene
or texture was presented, followed by a brief presentation of a grayscale object on a noise background, followed
by a mask. Then participants had to type the name of the object they saw. In Experiment 2B, the prime was a
texturized scene, designed to be unrecognizable but containing the same spatial distribution of orientations and
spatial frequencies.
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Is preserving only a distribution of spatial frequencies and
orientations in the texturized-scene condition sufficient to drive an
object recognition benefit (Experiment 2B)? We found that par-
ticipants accurately recognized 76.5% (�1.0%) of the objects
primed by texturized versions of uninformative backgrounds but
recognized 79.4% (�0.9%) of the objects primed by texturized-
informative backgrounds, a reliable effect of the informativeness
of the texturized scene, t(99) � 3.11, p � .002 (see Figure 6B).
Thus, the texturized scenes, which are not recognizable at the

basic-level, nevertheless prime the identity of objects that are
consistent with the original scenes. This suggests that preserving
only the spatial distribution of orientation and spatial frequency is
sufficient to drive the scene pathway and allow the activation of
scene representations and the associated object representations.

The effect of informativeness was reliable not only across
participants, but also across items (object-scene pairs; t(49) �
3.10, p � .003). This suggests that the effect is generalizable
across the scenes we showed, rather than driven by just a few pairs
of scenes and objects. Given the diversity of our stimulus set
(indoor; outdoor; urban; natural, with far views, close views; and
animals, people and things), this shows significant generalization
of the effect. The effect was also not driven by the small chance of
participant’s recognizing a texturized-scene. If we calculate a
priming effect using only the scenes that not a single participant
guessed the identity of in the control experiment, we find a priming
effect of 3.4% (which is significantly greater than zero; t(19) �
3.11, p � .006); with scenes that at least one person guessed the
identity of, the priming effect was only 1.8%, a numerical smaller
effect (the opposite of what would be predicted). This difference
for ever-recognized versus never-recognized scenes was not sig-
nificant, t(48) � 1.01, p � .32.

Discussion

We found that even texturized versions of informative scenes
were sufficient to drive an object recognition advantage, although
this advantage was less than that provided by the full scenes
(which convey a lot of other information, including semantics).
This provides further support for the idea that global pattern
information, like the spatial distribution of orientations and spatial
frequencies is sufficient to activate some aspects of scene repre-
sentations. This may be because these global ensemble textures
preserve information about scene layout (e.g., Oliva & Torralba,
2006; Ross & Oliva, 2010), and spatial layout information alone
is sufficient to generate predictions about which objects are
commonly present in the activated scene, thereby facilitating
object detection and recognition (Bar, 2004; Bar et al., 2006).
This texture information may also be sufficient to activate other
aspects of scene representations (e.g., affordances; Greene &
Oliva, 2010).

We used facilitation of object recognition as our measure of
whether scenes were sufficiently processed to activate scene rep-
resentations. Our results suggest that global ensemble texture
representations are sufficient to activate representations of related
objects, suggesting that object-scene consistency effects may be
in part driven by global scene structure rather than solely by the
semantic information in recognizable scenes. This claim is
consistent with some previous work which has also pointed to
the fact that object-scene consistency effects can be driven by
spatially global representations of scenes. For example Mun-
neke, Brentari, and Peelen (2013) showed that the spatial loca-
tion of attention had little effect on the scene benefit for objects,
suggesting a more global, gist-based representation might be
responsible.

Overall, the current results suggest that sensitivity to the distri-
bution of orientations and spatial frequencies—what we call global
ensemble texture—can activate scene representations, perhaps be-
cause this information is critical to the representation of scenes’

Figure 6. Results of (A) Experiment 2A, (B) Experiment 2B, (C) Exper-
iment 3A, and (D) Experiment 3B. In Experiment 2A, there was a signif-
icant effect of the prime scene; participants performed better when the
scene was informative. The same was true in Experiment 3A, where a
prime object generated better performance when informative than uninfor-
mative. However, with texturized images, there was a major distinction
between scenes and objects: In Experiment 2B, there was a significant
effect of the prime texturized-scene, where people did better when the
texture was generated from informative scenes than when it was generated
from uninformative scenes. However, there was no benefit in Experiment
3B from informative texturized-object primes.
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spatial layout. Combined with Experiment 1, these results rein-
force the proposed link between such global ensemble texture and
scene recognition.

Experiment 3: Is Global Ensemble Texture
Particularly Informative for Scenes?

In the first two experiments, we showed that (a) the same
participants who are the best at recognizing global pattern in
simple grids of Gabor elements are also the best at rapid scene
recognition, and (b) preserving only a grid of orientation and
spatial frequency information is sufficient to drive the scene path-
way, at least enough to activate and prime relevant objects. In both
cases, we suggested this is because of a link between scenes in
particular and global ensemble texture patterns. Indeed, computa-
tional work has shown that such texture representations are par-
ticularly informative for scenes, since such texture patterns pre-
serve information about 3D scene structure (e.g., Ross & Oliva,
2010).

In a third experiment, we asked whether global ensemble texture
information provided information that was particularly relevant for
scene representations, as we have hypothesized, or whether global
ensemble texture was instead equally useful for driving object
recognition systems. In particular, we designed a stimulus set and
experiment that mirrored that of Experiment 2A and 2B, but rather
than using scenes and texturized-scenes as primes, we used objects
(3A) and texturized-objects (3B). We reasoned that if the preser-
vation of global ensemble texture information is informative only
for scenes and not for objects, as would be expected if it is driven
primarily by sensitivity to spatial layout, then, despite the presence
of a strong priming effect from texturized-scenes (in Experiment
2B), we should abolish all priming effects by using texturized
objects (in Experiment 3B).

Experiment 3 was thus identical to Experiment 2, except using
objects rather than scenes as primes: an informative object prime
(e.g., a basketball hoop) or uninformative object prime (e.g., a
cooking pot) was shown, followed by an object to be recognized
(e.g., a basketball player), after which the object was masked and
then participants had to type the name of the object they saw. The
objects that needed to be recognized were identical to those in
Experiment 2.

Existing work has shown that object-to-object consistency gives
rise to object recognition benefits, just as scene-to-object consis-
tency give rise to object recognition benefits. For example, Dav-
enport (2007) showed in a paradigm very similar to that of Dav-
enport and Potter (2004) that informative objects facilitated free
responses for naming other objects (see also Auckland, Cave, &
Donnelly, 2007). Thus, we reasoned that objects should serve as
primes exactly as well as scenes (Experiment 3A). This allows us
to investigate whether texturizing those objects preserves the prim-
ing effect as it did for scenes (Experiment 3B). We used pilot
experiments to choose the prime objects, which allowed us to
match performance with the informative-object primes (Experi-
ment 3A) to the performance of informative-scene primes (Exper-
iment 3B), thus providing an equal starting point for asking about
how texturizing the primes affects performance in scenes and
objects.

Method

Participants. Fifty participants were recruited on Amazon’s
Mechanical Turk for Experiment 3A, which we expected to have
a similar effect size to Experiment 2A. To choose a sample size for
Experiment 3B, we did a power calculation based on the data from
Experiment 2B. Because we hypothesized that texturized-objects
might not lead to a priming effect, we made sure we had 95%
power to detect the same size priming effect we observed with
texturized-scenes (Cohen’s d � 0.31). Achieving this power re-
quires 136 participants. Thus, in Experiment 3B, we recruited 150
participants, giving ample power to detect a priming effect if one
is present with texturized-objects. All participants were from the
United States, were over 18, and gave informed consent in accor-
dance with the procedures and protocols approved by the Harvard
Committee on the Use of Human Subjects. All participants indi-
cated they had normal or corrected-to-normal color vision. All
participants were paid $1 for several minutes of their time and
none of the participants participated in multiple experiments (all
participants are identified by a unique ID by Amazon).

Stimuli. Stimuli consisted of the same 50 objects as in Exper-
iment 2, but rather than scenes serving as primes, related objects
instead served as primes (e.g., a cooking pot for a chef; a basket-
ball hoop for a basketball player; a checkered flag for a race car;
see Figure 7). In Experiment 3A, the prime-objects were presented
normally. In Experiment 3B, they were first “texturized,” using the
same algorithm as described in Experiment 2B.

As in Experiment 2, we ensured that the texturized object-prime
images were difficult or impossible to recognize at a basic-level
(e.g., pot, bunny, etc.) by running a control experiment in which 30
naïve participants were shown the texturized-object images and
asked via free response to guess what kind of image they were
generated from or most closely resembled. Participants were gen-
erally unsuccessful at this task (6.3% correct), although there were
four images that were recognized a significant portion of the time
(a snake, a rabbit, a giraffe and a fork)—all cases where the
“outline” of the image was sufficient to drive recognition in cases
where participants were explicitly asked to recognize the object. It
remains unlikely that participants would recognize these objects in
the context of the experiment, but, to ensure the possibility of
recognition did not affect our results, we look at performance with
these images separately as well as analyzing all images together.

Procedure. The procedure was identical to that of Experiment
2, except with prime objects (3A)/prime texturized-objects (3B)
rather than prime scenes/texturized-scenes.

Results

In Experiment 3A, with recognizable objects as primes, partic-
ipants accurately recognized 73.7% (�1.9%) of the objects primed
by uninformative objects but recognized 82.9% (�1.5%) primed
by the informative objects, a reliable effect of the prime object,
t(49) � 5.89, p � .0001 (see Figure 6C). Thus, the basic benefit of
informative objects on object recognition was very similar to the
effect of informative scenes on object recognition (benefit of
informative scenes: 9.7%, benefit of informative objects: 9.2%).

Is preserving only a distribution of spatial frequencies and
orientations in the texturized-object condition sufficient to drive an
object recognition benefit (Experiment 3B) as it was with scenes?
Participants accurately recognized 77.2% (�1.0%) of the objects
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primed by texturized versions of uninformative objects and recog-
nized 77.2% (�1.0%) of the objects primed by texturized versions
of informative objects. Thus, there was no reliable effect of the
informativeness of the texturized object prime, t(149) � 0.12, p �
.90 (see Figure 6D). Moreover, comparing Experiments 2B and 3B
shows that the benefit for texturized-objects (�0.08%) was sig-
nificantly smaller than the benefit for texturized-scenes (2.9%;
t(248) � 2.63, p � .009), showing an interaction between exper-
iments. Thus, while the texturized scenes nevertheless prime the
identity of objects that are consistent with the scenes, the textur-
ized objects do not. This is despite the fact that fully recognizable
objects and scenes result in the same priming effect. This suggests
that preserving only the spatial distribution of orientation and
spatial frequency is sufficient to drive the scene pathway but not
the object pathway.

As with the texturized-scenes, we can break down the effect by
whether the prime object was recognized or not. If we calculate a
priming effect using only the prime-objects that not a single
participant guessed the identity of in the control experiment, we
find a priming effect of 0.5%; with prime-objects that at least one
person guessed the identity of, the priming effect was �0.4%. This
difference is not significant, t(48) � 0.52, p � .61. Thus, the small
chance of a texturized-scene or texturized-object being recognized
by a participant does not seem to modulate the priming effect.

Discussion

We found that texturized versions of prime objects were insuf-
ficient to drive an object recognition advantage. Thus, while the
texturized scenes prime the identity of objects that are consistent
with the scenes, the texturized objects do not. This is despite the
fact that fully recognizable objects and scenes result in similar size
priming effects. This suggests that preserving only the spatial
distribution of orientation and spatial frequency—the global en-
semble texture—is sufficient to drive the scene pathway but not
the object pathway.

General Discussion

In Experiment 1, we found that participants who were most
sensitive to changes in spatial ensemble structure were also the
participants most influenced by scene backgrounds in an object
recognition task. This suggests a link between spatial ensemble
processing and rapid scene recognition. In a second experiment,
we showed that preserving only global ensemble texture informa-
tion in scenes is sufficient to allow participants to activate scene
representations. In a third experiment, we show that this link
between global ensemble texture and scenes is selective to scenes:
preserving the same information in images of objects is insuffi-
cient to allow activation of related object representations. Overall,
our data support the hypothesis that global ensemble texture rep-
resentations can drive activation of scene information during rapid
scene recognition. This is consistent with computer vision models
showing the sufficiency of global patterns of orientation and
spatial frequency for recognizing scene information (Oliva &
Torralba, 2001, 2006; Renninger & Malik, 2004; Sofer et al.,
2015) and in particular, information about spatial layout (e.g., Ross
& Oliva, 2010).

Our data argue against a purely object-based view of scene
recognition in favor of a more global account. Our data also point
to a particular instantiation of global scene recognition: a repre-
sentation based on the spatial distribution of orientation and spatial
frequency across a scene; as opposed to a global scene represen-
tation based on low-frequency information (e.g., Schyns & Oliva,
1994) or nonspatially localized global properties (Greene & Oliva,
2009a). For example, because the displays from the spatial ensem-
ble task in Experiment 1 and the tasks of Experiments 2 and 3 are
not semantically meaningful, these spatial ensemble displays do
not have properties like temperature or navigability (Greene &
Oliva, 2009a). Thus, the connection we find between the spatial
ensemble tasks and scene processing and the preservation of
priming from texturized-scenes provides evidence for a global
scene recognition system based at least in part on the spatial
distribution of orientation at relatively high spatial frequencies

Figure 7. Methods of (A) Experiment 3A, (B) Experiment 3B. In both experiments, a grayscale prime object
or texture was presented, followed by a brief presentation of an object on a noise background, followed by a
mask. Then participants had to type the name of the object they saw on the texture background (the second
object). In Experiment 3B, the prime was a texturized object, designed to be unrecognizable but containing the
same spatial distribution of orientations and spatial frequencies.
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rather than solely based on affordances and other semantic global
properties (Greene & Oliva, 2009a).

It remains an open question at what level such ensemble texture
effects operate. For example, the priming effects of Experiment 2
could be relatively high level or low level. At a high level, partici-
pants might directly perceive spatial layout in our texturized-scenes,
allowing them to activate the relevant object representations. Al-
ternatively, the effects could arise at a lower level; for example,
participants might be primed by large homogenous regions in the
scene to expect large objects versus small ones. One important
note here is that any account needs to explain why priming is
preserved for texturized scenes but eliminated for texturized ob-
jects. Thus, some scene-specific information must be posited, even
in low level accounts.

While our results suggest some role for global ensemble texture
in scene recognition, global ensemble texture information is cer-
tainly not the only thing relevant to scene recognition. People
accumulate a great deal of information about scenes over multiple
saccades and integrate this information into a rich scene represen-
tation (e.g., Hollingworth & Henderson, 2002; Hollingworth,
2006, 2004; Malcolm, Nuthmann, & Schyns, 2014). In addition,
more fine-grained information, like junctions between contours,
are also relevant to how participants rapidly recognize scenes (e.g.,

Walther & Shen, 2014). However, our results do point to the
possibility that scene processing may be partially reliant on distri-
butions of orientation and spatial frequency that are not totally
localized.

Separate Object and Scene Processing Pathways

Bar (2004), among others, has argued that low spatial frequen-
cies might be processed quickly to arrive at a perceptual hypoth-
esis about the identity of an object. Our proposal is related but
different, in that the global ensemble texture information we pro-
pose helps underlie scene recognition is primarily reflected in a
spatial distribution of high spatial frequency information rather
than the low spatial frequency information. For example, if blurred
with a low-pass filter, the stimuli from our spatial ensemble task
(Figure 1A) become a uniform gray field. While low frequency
information may be particularly informative for objects, as it
preserves overall shape contours (e.g., Bar, 2004), the distribution
of relatively high-spatial frequency information has previously
been shown to be particularly informative for scene layout (e.g.,
Ross & Oliva, 2010).

This suggests a possible dissociation between the processing of
scenes and the processing of objects, which may be related to the

Figure 8. (A) Scene images used in Experiment 2. (B) Texturized-versions of these scenes using our grid of
orientation and spatial frequencies algorithm (based on Oliva & Torralba, 2006). (C) Texturized-versions of
these scenes using a popular algorithm that assumes stationarity (homogeneity), by Portilla and Simoncelli
(2000). You can see that the algorithm we use, which is considerably simpler and retains fewer image features
than the Portilla and Simoncelli algorithm, nevertheless preserves spatial layout information better than the
Portilla and Simoncelli algorithm because it does not assume spatial homogeneity across the image and is
designed as a model of scene structure rather than explicitly as a model of visual texture.
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known dissociation between how these stimuli are processed in the
ventral visual pathway (e.g., Kanwisher, 2010). In general, our
data are consistent with a two-pathway view of the brain’s pro-
cessing of visual scenes, in which one focal attention-bound path-
way (e.g., LOC, pFS) processes object information while a second
nonattentional (or distributed attention) pathway processes scene
information via global ensemble texture and spatial layout (e.g.,
OPA/TOS, PPA; Park et al., 2011; Wolfe et al., 2011). In partic-
ular, neuroimaging studies of scene-selective brain regions suggest
that, of all the ways scenes differ from objects, the dimensions
most relevant for these brain regions are the spatial layout of the
scenes and their visual texture rather than the number of objects
present or how complicated the relations between objects are (Cant
& Xu, 2012; Dilks, Julian, Paunov, & Kanwisher, 2013; Epstein,
2005; Epstein & Kanwisher, 1998). This is consistent with the idea
that global ensemble texture information may be particularly rel-
evant for scenes, rather than objects, and that this may be related
to such texture information’s utility for determining the spatial
layout of a scene.

One possibility is that these two pathways—an object pathway
and a scene pathway—process all scenes simultaneously (e.g.,
Wolfe et al., 2011). For example, when viewing a single scene,
areas like LOC may process information about the objects and
content while simultaneously areas like PPA process information
about spatial layout (e.g., Park, Brady, Greene, & Oliva, 2011).

Effect of Image Statistics on Object and Scene
Recognition

We argue that rapid scene recognition may rely on global
ensemble texture processing, but that object recognition requires
more information than just the global ensemble texture of the
object. In particular, we find that our texturized objects (Experi-
ment 3B) are insufficient to prime related objects, whereas the
same texturization process preserves enough information about
scenes to prime related objects (Experiment 2B). However, there
do seem to be some circumstances where participants can make
very basic distinctions about the objects an image contains based
on global image statistics. In particular, there is a significant
literature on rapid detection of whether an animal is present in a
scene or not (Kirchner & Thorpe, 2006; and some related work on
tasks like vehicle detection; VanRullen & Thorpe, 2001). These
tasks show that participants can very rapidly detect whether an
image contains an animal. However, some have argued that rather
than doing object recognition per se, participants may succeed at
these tasks in part by analyzing the images holistically and asking
whether their global image statistics (like their amplitude spectra)
are consistent with what would be expected of an image with an
animal in it (e.g., Torralba & Oliva, 2003). However, the extent to
which this is true remains unclear (Crouzet, Joubert, Thorpe, &
Fabre-Thorpe, 2012; Fabre-Thorpe, 2011; Gaspar & Rousselet,
2009) and for the most part, this strategy appears to be useful only
for making superordinate-level categorizations about large central
objects, rather than a more general property of object recognition
(Fabre-Thorpe, 2011).

While the global ensemble texture of the object alone does not
support basic-level object recognition, it is possible that large
objects may affect the global ensemble texture of scenes, making
the scenes more or less recognizable. For example, recent work on

rapid scene recognition has shown that even with very rapid scene
categorization, participants are faster to recognize a scene in the
presence of congruent objects (compared to incongruent objects;
Joubert, Rousselet, Fize, & Fabre-Thorpe, 2007). However, this
effect of objects on scene recognition can actually be modeled by
considering the ways in which adding large objects to a scene
affects the global image statistics of a scene (Mack & Palmeri,
2010). In particular, differences in the global ensemble texture of
the congruent versus incongruent images are sufficient to explain this
effect without any appeal to object recognition per se. Thus, these data
are consistent with our claim that rapid scene recognition may be
particularly related to global ensemble texture processing, and, at least
in some cases, object congruency effects may be caused not by object
recognition processes per se but by the way objects affect global
ensemble texture and thus scene recognition (Mack & Palmeri, 2010).
Note that in the current experiments, we are interested in the opposite
effect (the extent to which scenes prime object recognition), so our use
of global ensemble texture does not conflict with the results of Mack
and Palmeri (2010) but instead provides additional support for a
global ensemble texture view of scene recognition. In addition, in
Experiments 2 and 3, we presented the prime scenes/objects and test
objects sequentially to avoid any interactions in how the objects
modified the scene statistics or object statistics in a simultaneous
display.

Throughout the current set of experiments, we used a task where
scene recognition was measured only indirectly, through its facil-
itation of object recognition. We based this decision on the robust
literature suggesting scenes influence objects in an interactive
manner during early recognition (e.g., Joubert et al., 2008). In
Experiment 2, we show this facilitation of object recognition can
occur even with limited scene information (only the global ensem-
ble texture). In many ways, this very limited scene context is
similar to the paradigm used in contextual cueing experiments
(Chun & Jiang, 1998). In these paradigms, contextual information
is often just the location of relevant distractor objects in a display
of simple discrete objects (like T’s and L’s). Having a consistent
and recurring background context can help make decisions about
target objects—like which direction a sideways T is facing—
easier (Brady & Chun, 2007; Kunar, Flusberg, & Wolfe, 2006).
One interesting implication of this is to ask whether global ensem-
ble texture information might be particularly useful for guiding
visual search during contextual cueing and other memory-based
tasks where limited “scene” information is used to guide object-
based tasks.

Choice of Texture Representation

Many studies have relied on the Portilla and Simoncelli algo-
rithm (Portilla & Simoncelli, 2000) to preserve low-level informa-
tion while discarding high-level information in natural images. In
the current experiments, we instead make use of a model based on
V1-like features (the GIST model of Oliva & Torralba, 2001,
2006). We made use of this texture algorithm because we are most
interested in how people represent spatial structure—for example,
the top of the image being largely made-up of vertical elements
and the bottom horizontal elements, an important clue to spatial
layout—which is not the kind of structure the Portilla and Simo-
ncelli texture model represents. In fact, the Portilla and Simoncelli
algorithm assumes stationarity (homogeneity) across the image
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(Portilla & Simoncelli, 2000). Thus, while this algorithm preserves
important texture information, it does not preserve the kind of
spatial layout information we are interested in the current experi-
ments (see Figure 8 for examples).

Of course, nonstationary texture models could be employed that
are considerably more sophisticated than our simple grid of ori-
entations and spatial frequencies model. However, one benefit of
the simpler texture algorithm we use is that the analogy between
the representation of global ensemble texture we use here and the
spatial ensemble Gabor-task we use in Experiment 1 is extremely
direct: Both are limited to a set of orientations at fixed spatial
frequencies and grid locations. The success of even this simple
texture algorithm at preserving spatial layout information but
discarding semantic information and object-based information pro-
vides a motivation for why participants might be good at the
spatial ensemble tasks we employ in Experiment 1, and why
performance in such tasks might be related to scene recognition.

Distinctions Between Summary Statistic Tasks and
Spatial Ensemble Tasks

In Experiment 1, we found that computation of nonspatial
summary statistics (i.e., average orientation) did not relate to scene
recognition, despite the similarity between the Gabor elements and
global attention required in the spatial ensemble task and the
summary statistic task. In the context of our task, this suggests that
the correlation we find between spatial ensembles and scene rec-
ognition is not driven purely by the ability to globally attend to
multiple Gabor elements. However, this data also suggests that
spatial ensembles and nonspatial summary statistics may be dis-
tinct. In particular, the major constraint on computing summary
statistics like the mean may be how precisely the individual
elements are represented, as this places a limit on the possible
precision of such statistical summaries (e.g., Alvarez, 2011; Hab-
erman et al., 2015). In other words, nonspatial summary statistics
like the mean orientation of a set may be more related to the
precision of individual object representations, while, ensemble
representations that require the preservation of distributions of
spatial information may be particularly related to scene recogni-
tion.

Alternatively, there may be aspects of our task that results in the
summary statistic task being performed differently than the spatial
ensemble task. For example, consistent with existing studies of
summary statistics, we used relatively long 1-s exposures (e.g.,
Haberman et al., 2015; Sweeny & Whitney, 2014). Thus, partici-
pants in this task may have performed it with serial attention,
weakening the link to scene recognition.

Conclusion

The present series of studies argues for an important link be-
tween global ensemble texture information and scene recognition.
We first used an individual differences approach to establish a
relationship between rapid scene perception and spatial ensemble
processing (but not nonspatial statistical summary perception), a
kind of global ensemble texture representation. We then showed
the sufficiency of global ensemble texture information for activat-
ing scene representations, but not object representations, using a
priming paradigm. Together, these studies provide support for the

hypothesis that global ensemble texture representations partly un-
derlie rapid scene recognition.
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