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Working memory is a reconstructive process that requires integrating multiple hierarchical representations
of objects. This hierarchical reconstruction allows us to overcome perceptual uncertainty and limited cogni-
tive capacity but yields systematic biases in working memory as individual items are influenced by the en-
semble statistics of the scene, or of their particular group. Given the importance of the hierarchical encoding
of a display, we aim to characterize what structures people use to encode visual scenes using a nonparamet-
ric data-driven approach. In Experiment 1, we examine visuospatial memory for locations by asking partici-
pants to recall the locations of objects in a serial reproduction task. We show that people report items in a
more compact structure than they initially were and organize them into clustered spatial groups. In
Experiment 2, we explicitly introduce discrete color groups, allowing us to test whether the color feature
governs the spatial grouping. We find that the spatial structures were color-contingent. By analyzing color
groups, we circumvent the grouping uncertainty in Experiment 1 and further reveal that people compress
color groups into collinear structures with similar orientations and equidistant spacing.

Public Significance Statement

What we perceive and remember is a result of both what we sense, and what we expect to be in the
world. Here we use serial reproduction—a formalized version of the telephone game—to character-
ize what spatial arrangements people expect in visual scenes, and thus what kinds of errors they
make when trying to remember a particular display.

Keywords: visuospatial memory, serial reproduction, ensemble coding, memory biases

Although working memory possesses an extremely limited
capacity for information (Cowan, 2001, 2005; Miller, 1956), it can
make efficient use of its limited resources by exploiting statistical
structure in the visual world to aid recall (Alvarez, 2011; Ariely,
2001; Brady & Alvarez, 2011; Brady et al., 2009; Orhan et al.,
2014; Sims et al., 2012). For example, an observer trying to
remember the locations of people in a crowd might infer that indi-
viduals are organized into groups. Later on, the observer might
have forgotten people’s exact locations and compensate by
remembering individuals’ locations biased toward their group cen-
ters (Lew & Vul, 2015). Although relying on objects’ ensemble
statistical structures bias the memory of these objects, it can gain
precision in the representation of the ensemble, compensating for
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noise in local feature representations (Alvarez & Oliva, 2009).
Furthermore, encoding objects according to their statistical struc-
ture constrains the possible properties of those objects, allowing
observers to remember the objects’ exact features more precisely
(Orhan et al., 2014; Sims et al., 2012). For example, inferring that
a set of objects generally fall on a horizontal line constrains their
y-coordinates. This allows the observer to focus on encoding their
x-coordinates with greater precision. However, the effectiveness
of an encoding scheme depends on how well it matches the statis-
tics of a stimulus (Orhan & Jacobs, 2014b). Consequently, when
people’s expectations about statistical structures fail to match what
they observe, the fidelity of visual working memory will suffer.
Orhan and Jacobs (2014a), for example, found that in a typical
study of capacity, when the subject’s visual systems’ built-in
expectations about regular line configuration (i.e., line segments
with similar orientations or form continuous lines) mismatches
with stimuli that have uniformly distributed features, the mismatch
can detrimentally bias memory and potentially explain a signifi-
cant portion of performance limitations. Therefore, how people
use the structure of displays to help encode visual information
depends on what structures they have available in their visual sys-
tem (e.g., object templates, like letters; oriented lines, etc.) to
encode objects in displays.

Typically, researchers examine what spatial organizations peo-
ple encode by designing stimuli that test whether people use
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specific grouping strategies to facilitate task performance. In per-
ception, this approach has allowed psychologists to identify a host
of Gestalt grouping principles (Wertheimer, 1938; Wagemans
et al., 2012). For example, visual perception processing is facili-
tated by grouping elements that are near each other (the principle
of proximity) or are similar to each other (the principle of similar-
ity) and perceiving continuous lines over segmented pieces (the
principle of continuity). Furthermore, previous findings demon-
strate that Gestalt grouping principles (i.e., connectedness, com-
mon region, spatial proximity and similarity) facilitate visual
working memory performance in change detection tasks (Wood-
man et al., 2003; Xu, 2002, 2006; Jiang et al., 2000; Peterson &
Berryhill, 2013; Xu & Chun, 2007).

Building upon these findings, we adopted a data-driven design to
discover the grouping structures that people expect by virtue of the
memory biases that arise in a serial reproduction paradigm. Rather
than testing whether people possess particular structures whose
motivations are themselves poorly understood, this allows us to dis-
cover a wide variety of structures without specifying them in
advance. In the current study, we had participants reveal their
grouping expectations by performing a task similar to a game of
Telephone: each participant studied and recalled the locations of
objects and then the next participant studied and recalled the previ-
ous participant’s responses, and so on. The serial reproduction pro-
cess amplifies shared biases by aggregating systematic error and the
serial reproduction chains will eventually converge toward
responses which are more in line with participants “priors”—that is,
which are more easily represented and reproduced by participants
(Bartlett, 1932; Griffiths & Kalish, 2005; Kirby et.al., 2008; Lan-
glois et al., 2021; Sanborn et al., 2010; Xu & Griffiths, 2010)—in
our case, the structural organizations that participants expected.
From a Bayesian point of view on memory: Peoples’ reproduction
reflects their posterior, and that this posterior combines the sensory
percept and their particular “priors” that might be relevant for a
given memoranda. Thus, at every iteration, participants’ posterior
—upon which they base their response—will be influenced by the
data and the relevant “priors,” leading to biases. Over iterations, pri-
ors that are in common across participants — but not those that are
not — will be increasingly reflected in the responses (as the prior
influences each iteration, and only does so in the “same direction”
for each participant if it is in common between participants).
Indeed, previous work has shown that people’s reproductions are a
combination of learned priors and their memory for the specific
instance they are trying to recreate, leading their memory to be
slightly pulled toward their prior when noise is present (e.g., Hut-
tenlocher et al., 2000; Hemmer & Steyvers, 2009). When this pro-
cess is repeated over and over, as in the case of serial reproduction,
this results in the chains moving to situations that more and more
closely resemble priors that are in common across participants.
Thus, the serial reproduction paradigm emphasizes and exaggerates
inductive biases through the process of repeated noisy reproduction,
even if the serial reproduction chains do not perfectly converge to a
single unique arrangement, they allow us to examine the structural
characteristics that gradually surface over iterations.

In Experiment 1, we examine the structures people use to
remember locations in working memory by asking participants to
recall the locations of objects in a serial reproduction task. We
show that people tend to misremember items toward a more glob-
ally compact structure and organize them into clustered spatial

groups. In Experiment 2, we explicitly introduce discrete color
groups, allowing us to test whether the color feature governs the
spatial grouping. We find that the spatial structures were color-
contingent. By analyzing color groups, we circumvent the group-
ing uncertainty in Experiment 1 and further reveal that people tend
to compress color groups into dot line segments with similar orien-
tations and equidistant spacing.

Experiments 1A and 1B

Rather than designing predefined structural regularities that peo-
ple possibly capitalize on, we took a data-driven approach to
reveal the structures people use to encode locations using a serial
reproduction paradigm.

In Experiment 1A, participants briefly saw a set of homogenous
dots on a computer screen and clicked on the screen to recall where
the circles had been after a short delay. Critically, the locations one
participant reported were shown as the stimulus to the next partici-
pant, thus producing a serial reproduction chain. Experiment 1B
was a perceptuomotor control experiment with the same serial
reproduction structure except the stimulus was available throughout
the reproduction of the dots. The perceptuomotor experiment allows
us to validate whether any structural biases arose due to biases in
visual memory or motor planning with perceptual noise.

Method
Stimuli

For the memory task, the subjects’ goal was to remember the
location of 15 gray dots within a circular display area. The display
area had a radius of 275 pixels, while each of the dots had a radius
of 10 px. In the first iteration of each chain, the locations of the
dots were randomly drawn from a uniform distribution over the
display area, subject to the constraint that the dots could not over-
lap. Perceptuomotor control task has a similar stimulus display.
The size and resolution of observers’ computer monitors were not
controlled. However, with an exclusion criterion, the goal was re-
cording acceptable recalls within subjects rather than comparing
the recall performances between subjects.

Procedure

In Experiment 1A, participants first performed a randomly gen-
erated practice trial to familiarize themselves with the task. The
second trial was our main test in which participants saw locations
of either a seed display (i.e., randomly distributed objects) of the
chain or locations reported by the previous participant in the
chain). Participants were not told that the stimuli they studied
were another participant’s responses and they were ignorant about
being in a serial reproduction chain. In the third trial, participants
studied the initial seed given the chain they were assigned (partici-
pants who received the seed display in the test trial would perform
on the same seed display twice). The fourth trial was a randomly
generated performance check: if a participant’s score was below
criterion on this test, their responses were not included in the serial
reproduction chain to prevent a single inattentive subject from cor-
rupting an entire chain.

On each trial (see Figure 1), participants observed the locations
of the circles for 10 seconds, followed by a 1 second mask.
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Figure 1
Experiment Trial
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Memory trials (top row): Participants saw 15 gray dots for 10 seconds followed by a 1-second mask. Participants then

recalled the locations of all the dots and were told how many dots they had to recall. Participants could move around the dots
until they were satisfied. Participants then saw the correct object locations (gray) and their recalled locations (red) and the map-
ping between the targets and their recalls (black lines). Perceptuomotor trials (bottom row): Participants saw a display with 15
gray dots and a blank display next to it and they were told to copy the dots’ locations on the blank display. They received feed-
back after they were satisfied with their response. See the online article for the color version of this figure.

Participants then recalled the locations of the circles by clicking
the mouse. Participants had unlimited time to recall the locations
of the circles and could move them by dragging the circles as
much as they wanted. Once participants indicated that they were
done reporting the locations (by pressing Enter), we gave them
feedback by showing the correct and recalled locations along with
lines indicating how far off they were. We determined the map-
ping between guesses and targets using a greedy search that mini-
mized root mean square error (RMSE). Participants also received
a score between 0 and 100 based on the average distance between
the recalls and targets normalized by the standard deviation of
object locations. To motivate participants, they were instructed
that their final bonus would reflect their scores.

For the Experiment 1B (perceptuomotor control task; see Figure
1), participants saw two environments side-by-side. The left envi-
ronment contained the circles in the target locations and remained
onscreen for the entire trial. The right environment was empty,
and participants were instructed to copy the locations from the left
environment onto the right environment. Once the participant fin-
ished, they received feedback in the right environment using the
same criteria as in the memory task.

Design

For the memory experiment (Experiment 1A), we showed sub-
jects a display of 15 dots, and asked them to report the locations of
all 15 dots after a brief mask interval. The positions one subject

reported were presented as the stimulus to another subject. This
process was repeated with 20 unique subjects, thus yielding a se-
rial reproduction “chain” of 20 iterations.

The control experiment (Experiment 1B) was designed to elicit
only perceptuomotor errors. The structure of the perceptuomotor
task was similar to the memory task—participants studied and
reported the locations of objects, and their responses were passed
on to the next participant. However, instead of briefly studying
and then recalling the objects, participants had access to the dis-
play they were instructed to reconstruct the entire time.

For both experiments, we generated 10 “seed” displays, each
with 15 dots placed randomly in the display area. We set up 10
chains for each seed display and then ran each chain for 20 itera-
tions. Thus, there were a total of 100 chains, each consisting of 20
iterations. Figure 2 shows some of the typical examples of serial
reproduction chains.

Participants

For the memory task, we gathered participants from the Ama-
zon Mechanical Turk and rewarded participants with a base pay-
ment and a performance-based bonus. We allowed participants to
perform multiple trials of our experiment for different initial dis-
plays, resulting in 1614 unique participants performing a total of
2,000 experiment runs. For the perceptuomotor control experi-
ment, we gathered 1,399 unique participants from the Amazon
Mechanical Turk marketplace with a base payment.
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Figure 2

Four Example Chains (Rows) for the Seed Display, 1st, 5th, 10th, 15th, and 20th
Iterations (Columns) From the Memory Experiment and the Perceptuomotor
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For the memory experiment (Experiment 1A), despite objects being initially uni-

formly distributed in the displays, participants gradually organized them into complex
organized structures. In contrast, for the perceptuomotor experiment (Experiment 1B), the
reproduction preserves the overall pattern of the original seed.

Results
Did Participants’ Responses Drift Across Iterations?

Figure 2 shows examples of serial reproduction chains evolving in
the memory experiment and the perceptuomotor experiment. To
quantitatively determine whether participants’ responses drift, we
measured the recall error distance using the mean absolute error
(MAE) between the objects in a given iteration and the objects
matched by the Hungarian algorithm (Kuhn, 1955) in the original
seed. If the responses become increasingly dissimilar to the original
seed, we would expect the MAE to increase across the chains. Figure
3 shows the MAE averaging across all chains for a given iteration.
We found that the MAE averaging across all chains for a given seed
display increased over iterations in memory (b = .021, 95% CI [.020,
.022]) and perceptuomotor (b = .0155; 95% CI [.015, .016]) experi-
ments indicating that patterns gradually diverged from the original
seeds. However, the divergence in the memory experiment cannot be
accounted for by perceptuomotor errors. The errors introduced in the
memory experiment are significantly greater than those in the percep-
tuomotor experiment (Welch ¢ test: #[3505.1] = 25, p < .001, d = .8).

Altogether, participants appeared to introduce small errors, resulting
in the locations of objects drifting over time and becoming increasingly
dissimilar to the initial seed. Moreover, the errors are much smaller
with direct reproduction than with memory recall, indicating that visual
memory errors cannot be fully explained by perceptuomotor errors
and the accumulating divergence from the random seed in the memory
experiment must stem from systematic biases in visuospatial memory.

Did Participants’ Patterns of Responses Converge Over
Iterations?

We showed that the participants’ responses drift across the se-
rial reproduction chains and the final iterations significantly
diverge from the random seeds. To examine what gives rise to this
divergence, we sought to verify that the recalled patterns’ gradual
drift is toward relatively stable structures, as we would expect if
people share a set of structures they use to encode visual displays
(what in the Bayesian conception of memory would be considered
their shared priors).

To quantitatively determine the convergence of the recalled pat-
terns, we measured one-back MAE which is the average recalled error
distance of the current iteration to the immediately preceding iteration
(e.g., st iteration vs. the random seed; 20th iteration vs. 19th itera-
tion). A trend toward convergence in the memory experiment would
result if earlier iterations tend to have larger drift from their immedi-
ately preceding iteration and these errors gradually decrease closer to
the perceptuomotor errors toward the end of chains. This would be in-
dicative of the structures becoming more stable over time.

Figure 4 shows the MAE of the iteration to its one-back itera-
tion. We found that one-back MAE significantly decreases over
iterations (b = —.0034; 95% CI [—.004, —.0029]). Furthermore,
the one-back MAE for the last iteration is significantly closer to
the average perceptuomotor one-back MAE than the first iteration
in the memory experiment (Welch ¢ test: #[185.18] = 6.2, p <
.001, d = .88) indicating large recall errors were driven by the
divergence of the dots from the structures people use to encode
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Figure 3

Mean MAE: The Mean Distance Between the Objects and the
Matched Locations in the Initial Seed Display Averaging Across
100 Chains Given Each Iteration
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Note. The red dots indicate the mean error distance in the memory

experiment and the blue dots indicate the mean error distance in the per-
ceptuomotor experiment. Participants’ responses initially resembled the
seed displays but became increasingly dissimilar over time. Error bars
indicate SEM. See the online article for the color version of this figure.

visual displays in the early iterations, and the errors approach to
perceptuomotor errors toward the end of the serial reproduction
chains as the chains approach more stable configurations that are
more congruent with the structures people use to represent dots.
Altogether, the results suggest that the serial reproduction chains
converged to relatively stable configurations. Thus, after partici-
pants’ biases influenced the displays, the displays were easier for
subsequent participants to accurately remember. This is consistent
with the fact that structures emerged that subsequent participants
could use to help encode the display more accurately. In the
Bayesian view of memory, this suggests the displays have become
more in line with participants’ visuospatial priors.

What Characteristics of Patterns Emerge Across Serial
Reproduction Chains?

While each chain seems to converge to a unique configuration,
some general characteristics of configurations manifest themselves
across chains as they diverge from the initial seeds. In this section,
we quantitatively measure pattern dispersion and clusterability.

Pattern Dispersion. To quantitatively measure the dispersion
of a display, we calculated the mean determinant of the covariance
matrix for each iteration aggregating across all chains. A smaller
mean covariance matrix determinant indicates a more compact (and
lower entropy) structure. The serial reproduction chains in the visual
memory experiment tend to converge toward significantly more com-
pact structures (b = —.19, 95% CI [—.20, —.18]), while those in the
perceptuomotor control experiment tend to drift toward slightly more
dispersed patterns (b = .028, 95% CI [.024, .032]) with much smaller
absolute slope (see Figure 5) (Welch  test for the difference of aver-
age deviation between memory and perceptuomotor experiments: ¢
[2287.2] = —49.7, p < .001,d = —1.57).

Clusterability. In the memory experiment, patterns not only
compacted, but also tended to be clustered. To examine the clus-
terability of patterns, we applied a measure using the Dip test on
pairwise distances (dip-dist test; Kalogeratos & Likas, 2012). Mul-
tiple modes in the distribution of pairwise distances implies the
presence of clusters (see Figure 6A), because within-cluster pairs
will be close together, while between-cluster pairs will be far
apart. Thus, to test for spatial clustering in our displays, we calcu-
late the set of pairwise euclidean distances in a given display, and
use them as inputs into the distribution Dip test (procedure
detailed in Hartigan, 1985). We found that the proportion of dis-
plays that had significant (p < .05) clustering based on the Dip
test on pairwise distance distributions increased over iterations in
serial reproduction chains (b = .011, 95% CI [.009, .014]) in the
memory experiment (see Figure 6B). Although there was a slight
increase of clustering in the perceptuomotor chains (b = .0009;
95% CI [.0004, .0014]), the significant clustering tendency in the
memory experiment could not be fully attributed to the perceptuo-
motor biases (paired-7 test: 1[19] = 8.2, p < .001, d = 2.47).

Discussion

We set out to characterize the structures people use to encode
visuospatial displays using a serial reproduction paradigm in
which participants had to reproduce a spatial arrangement of 15
homogenous dots on a screen after a delay. As intended, the serial
reproduction chains reveal the structured memory biases: the spa-
tial arrangements diverge from the original seed at a greater rate
when each reproduction trial requires a memory delay. Not only is
the rate of divergence greater for reproduction from memory, but
also memory reproduction introduces systematic biases into the
structure of the displays. Reproductions in the Memory experi-
ment, but not in the Perceptuomotor experiment, yield spatial
arrangements with more compact structures over iterations. Such a

Figure 4
One-Back MAE: The MAE Between a Given Iteration and lIts
Immediately Preceding Iteration
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Note. Red dots represent the memory experiment and blue dots repre-
sent the Perceptuomotor experiment. The one-back MAE significantly
decreases approaching the average perceptuomotor one-back MAE indi-
cating the serial reproduction chains converge toward stable configura-
tions. Error bars indicate SEM. See the online article for the color version
of this figure.
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Figure 5
Dispersion of Patterns in Memory and Perceptuomotor
Experiments
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Note. The dispersion of a display is measured by the determinant of the
covariance matrix of the object locations. The mean determinant of the
covariance matrix is computed for each iteration aggregating across all
chains given an iteration. For perceptuomotor experiments (blue dots), the
dispersion of the patterns across chains increases slightly over iterations.
In contrast, the dispersion significantly decreases in the visual memory
experiment (red dots) suggesting that configural representations underlie a
convergence toward more compact patterns. See the online article for the
color version of this figure.

tendency is consistent with the view of an adaptive bias that compen-
sates for the spatial memory uncertainty by reducing the magnitude
of encoded relative distances between objects (Lew & Vul, 2015)
and potentially increases the average accuracy of the stimulus repro-
duction (Huttenlocher et al., 2000). Moreover, we find that memory,
but not perceptuomotor reproductions, tend toward clustered groups.
In contrast to the traditional assumption that objects in visual mem-
ory are encoded independently, the result indicates that people appear
to encode higher-order structures of objects and utilize such struc-
tured memory to aid recall (Brady & Alvarez, 2011).

Although the overall trend toward clustering of spatial positions in
memory reproduction is robust, it fails to capture richer grouping
organizations to which the memory serial reproduction chains con-
verge. In particular, some displays converge to rich structures, and
these are sometimes part of separate clusters (see Figure 7). While
some aspects of the within-group structure might be estimated via
data-driven clustering, it is challenging to analyze this data in a clus-
ter-by-cluster manner when there is no direct way to assign different
items to different clusters a priori. To address this, we attempted to
better characterize these higher order group structures without intro-
ducing our own within-cluster distribution assumptions by explicitly
adding a grouping cue. In particular, in Experiment 2, we add colors
to the dots, to induce color-specific grouping, thus allowing us to ana-
lyze within-group and between-group structural biases.

Experiment 2

In Experiment 2, we explicitly introduced a grouping cue: color.
We aimed to test two questions: (a) Do the color cues serve a
strong grouping cue that induce color-specific spatial biases in

serial reproduction chains? (b) If (a) were true, would different
structures be used to represent the within-group and between-
group spatial arrangement?

Method
Stimuli

The stimuli were similar to the ones in Experiment 1 except that
the 15 dots were randomly assigned with red, green and blue col-
ors (i.e., 5 red dots, 5 green dots, and 5 blue dots).

Figure 6
Analysis of Clusterability
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Note. (A) Distance dip test. Top row: An unclustered arrangement of dots
and its pairwise distance distribution is unimodal. Bottom row: A clustered
arrangement of dots and its pairwise distance distribution is bimodal. (B)
Proportion of significantly clustered reports. The proportion of clustered
iterations increases across serial reproduction chains in the memory experi-
ment while very few arise in the perceptuomotor experiment. See the online
article for the color version of this figure.
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Figure 7
Three Examples of Structures

Seed 8,Chain 3, Iteration 20 Seed 2,Chain 10,lteration 20 Seed 5,Chain 10,lteration 20

Note. Response “Seed 8, Chain 3, Iteration 20”: The mean nearest neighbor clustering
analysis is explicitly aimed at capturing such unambiguous clustered grouping structure.
Response “Seed 2, Chain 10, Iteration 20” and Response “Seed 5, Chain 10, Iteration 20”:
Two examples of grouping structures cannot be captured by mean nearest neighbor cluster-

ing analysis despite there existing possible grouping structures.

Procedure

All observers were presented with 6 trials: 3 practice trials and 3
test trials. The three practice trials consisted of 3 dots, 9 dots and 15
dots. The 3 test trials consisted of 15 dots. The goal was to memo-
rize, and subsequently recall, the configuration of colored dots. In
each trial (see Figure 8), participants observed the locations of
specified numbers of dots for 15 seconds, followed by a one-second
mask. Participants then recalled the locations of the dots by clicking
the mouse and moving the dots to the recalled position. Participants
had unlimited attempts to recall the locations of the colored dots
and drag them at their discretion. Once participants indicated that
they were done reporting the locations (by pressing enter), we gave
them feedback by showing the correct and recalled locations along
with connected lines indicating the error. We determined the map-
ping between color-matched guesses and targets using a greedy
search that minimized mean absolute error (MAE). We assumed
the empirical measure of chance performance was MAE = .4 and
iterations with MAE greater than .4 were excluded.

Design

The serial reproduction design is the same as in Experiment 1.
We generated 10 initial seed displays, each containing 15 colored
dots with uniformly distributed locations. For each seed, we

Figure 8
Experimental Trial

collected 10 serial reproduction chains with 25 iterations for each.
Figure 9 shows three typical examples of serial reproduction
chains.

Participants

The experiment was conducted on the Amazon Mechanical
Turk Marketplace (who performed our study for payment and a
performance-based bonus). We allowed participants to perform
multiple trials of our experiment for chains with different initial
displays, resulting in a total of accepted 2,732 experiment runs.
Participants were not told that the stimuli they studied were
another participant’s responses.

Results
Do People Use Color-Contingent Grouping Structures?

We first replicated the result from Experiment 1 that the overall
dispersion of the patterns decreases across serial reproduction
chains (b = —.06, 95% CI [—.08, —.05]). Given the decreasing dis-
persion of overall patterns, the serial reproduction chains can con-
verge either to random color-mixed structures or color-contingent
grouping structures. To examine this account, we randomized the

15s —_— 1s —_— Until =P Feedback

Response

Note. Participants saw 15 dots with three different colors of equal number for 15 seconds

followed by a l-second mask. Participants then recalled the locations of all the dots.
Participants could move around the dots until they were satisfied. Participants received
feedback: the correct objects location and their recall (connected with lines). See the online
article for the color version of this figure.
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Figure 9

Three Typical Chains Starting With Random Seeds

Chains
° . .' “

Seed 5

Note.

15 20

Iteration

The random seed, 5th iteration, 10th iteration, 15th iteration, and 20th iteration are

displayed. See the online article for the color version of this figure.

colors within each iteration. If color did not play a role in group-
ing, then the within-color dispersion will be unaffected by shuf-
fling color labels across dots; however, if people grouped dots by
color, and then systematically reported same-color dots as closer
together, then the within-color dispersion will be greater after
shuffling color labels (see Figure 10A). We found that all color
groups became decreasingly dispersed across serial reproduction
chains (red group: b = —.12, 95% CI [—.14, — .10]; blue group:
b=—-.13,95% CI [-.16, —.11]; green group: b = —.14, 95% CI
[—.16, —.11]) and color randomization significantly increased the
dispersion of all the color groups (paired ¢ test, red group: #[24] =
15.12, p < .001; blue: #[24] = 11.08, p < .001; green group:
f[24] = —10.72, p < .001), indicating that subjects’ recalled pat-
terns are color-contingent (see Figure 10B). Therefore, we con-
clude that serial reproduction chains gradually converge toward
globally compact structures with color-specific groups.

What Characteristics of Structural Biases Emerge Within
Color Groups?

Since color features induce color-contingent grouping biases in
visual memory, we can use the color-specific grouping structures
to investigate the characteristics of within-group and between-
group structural biases. In particular, we examine tendencies to-
ward collinearity, orientation alignment across groups, and regu-
larity of spacing.

Collinear Grouping Tendency. With color-specific grouping
structures, we analyzed the organized shapes within color groups.
In general, the organized shapes can be categorized into isotropic
structures, anisotropic structures and collinear structures (see Fig-
ure 11A). These organized shapes can be differentiated by the ratio
of their principal components. The first principal component
(PC1) represents the maximum variance direction in the data and
the second principal component (PC2) is orthogonal to the first
principal component. Mathematically, the two eigenvalues of the

covariance matrix give the amount of variance carried along the
two principal component directions. The ratio of these two eigen-
values captures the overall shape of the group (see Figure 11A). A
greater ratio (i.e., large eigenvalue for PC1 and small eigenvalue
for PC2), indicates that the overall configuration is more univari-
ate, anisotropic, and line-like.

We classified color groups with PC ratios between 1 and 2 as
isotropic (15% of the data), groups with PC ratios greater than 14
(25% of the data) as collinear and the rest as anisotropic (60% of
the data). The partition assures adequate sample sizes and reasona-
ble shape classification (i.e., groups whose ratios between 1 and 2
are approximately isotropic and groups whose ratios greater than
14 highly resemble linear structure). We found that the proportion
of isotropic groups did not vary substantially over the 20 serial
reproduction iterations (b = —.0002; 95% CI [—.002, .001]). How-
ever, the proportion of linear groups (b = .01, CI [.009, .011])
increased significantly, trading off with the proportion of aniso-
tropic groups (b = —.009, 95% CI [—.010, —.007]) (see Figure
11B). This pattern suggests that a tendency for misreporting
objects closer to their group centers is greater along axes on which
the group has less variance, thus causing slightly anisotropic clus-
ters to be reported as even more anisotropic, gradually converging
to line-like structures. Altogether, this yields a systematic bias to-
ward collinear structures in visuospatial memory.

Similarity in Orientation Between Color Groups. With
three clearly defined color-specific groups, we can evaluate the
feature similarity between groups. Given that the majority of the
color groups are anisotropic, one of the features that characterize
the group similarity is its orientation. Because isotropic color
groups do not have defined orientations, we first identified the
iterations (66% of the data) in which all three color groups are
anisotropic (i.e., PC ratios > 2). We used the direction of PC1 as
an indicator of the shape orientation for the color groups and the
orientation similarity was measured by the magnitude of the nor-
malized vector sum of the first eigenvectors (unit vectors; see
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Figure 10
Color Grouping Analysis
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Note. (A) Random color-mixed structure (top row) vs. color-contingent grouping structure (bottom row). The

distinction between the two structures is whether the dispersion of the observed dots (solid line) changes signif-
icantly after color randomization (dotted line). For the color-mixed pattern, color randomization does not influ-
ence the dispersion of the color group. However, color-contingent groups are disrupted by color randomization
and their dispersion increases significantly as a result. (B) Dispersion of original color groups (solid lines) vs.
dispersion of color groups after color randomization (dotted lines). Error bars indicate *1 SEM. Iteration O rep-
resents the random seed. Pattern dispersion for color groups after randomization is significantly above that of
the observed color groups indicating serial reproduction chains gradually converge toward color-contingent
grouping structures. See the online article for the color version of this figure.

Figure 12A), which yielded a number between O and 1. The
larger the magnitude of the mean vector, the more similar their
orientations are. Since the orientation of a group can be equiva-
lently represented by the obtained first eigenvector direction or
its opposite direction, we searched for a combination of three
vectors that had minimum angle difference (i.e., maximum mag-
nitude of vector mean) for each iteration. This process yields a
higher average orientation similarity even on null data, so we
obtained the null sampling distribution of this similarity measure
for three randomly sampled unit vectors for each iteration.
Because we only considered trials where all three color groups
were anisotropic, the dispersion of the null distribution or orien-
tation similarities varied across iterations due to different num-
bers of included trials.

We found that orientation similarity increased over the 25 serial
reproduction iterations, indicating that successive reproductions
made the color groups more aligned with one another (b = .0014;
95% CI [.0009, .002]; see Figure 12B). In most of the later itera-
tions, orientation similarity was significantly greater than expected

from three randomly oriented vectors (e.g., M[iteration = 20] =
911, while the 95% confidence interval on the simulated null was
[.858, .894]) indicating that the orientations were more congruent
than expected by chance at p < .05. Furthermore, we would
expect such orientation similarity among groups to be more pro-
nounced when the groups themselves are more clearly oriented.
To evaluate this, we considered all 1717 anisotropic trials in which
all 3 groups had anisotropy ratios greater than 2, and asked
whether trials in which the average anisotropy of the 3 groups was
greater also had greater orientation similarity among groups. Spe-
cifically, we divided these anisotropic trials into five equal-sized
bins (n = 343 or 344) according to the mean anisotropy of the three
color groups and examined the average orientation similarity
within each bin. We found that trials in which the color groups
were highly anisotropic (i.e., individual objects within color
groups were arranged into something resembling a line), the three
color groups tended to have much more similar orientations than
expected by chance (M[level 4] = .909, M[level 5] = .933, com-
pared to the 95% null hypothesis interval of [.868, .886]).
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Figure 11
Analysis of Cluster Shapes
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(A) Categories of shapes: Isotropic group, anisotropic group, collinear group. The greater

the ratio, the more anisotropic and collinear the configuration is. (B) The change in proportion of
cluster shapes represented by area. Top area: collinear group (ratio > 14). Middle area: aniso-
tropic group (2 < ratio < 14); Bottom area: isotropic group (1 < ratio < 2). The proportion of
isotropic groups stays roughly the same across chains and the proportion of collinear groups
increases significantly while the proportion of anisotropic groups significantly decreases. It
implies visual memory of the locations tends to be biased toward collinear structures. See the

online article for the color version of this figure.

However, the orientation similarity on iterations when groups are
only moderately anisotropic was no different from chance (M
[level 1] = .878, M[level 2] = .887, M[level 3] = .885, 95% null
hypothesis interval [.868, .886]; see Figure 12C). Together, these
results indicate that orientation similarity between groups emerges
when the three groups are clearly collinear. This result makes
some sense, because it is the most linear patterns that have the
most identifiable orientations, and this result is also consistent
with orientation similarity emerging in later iterations, as the most
linear groups also arise only in later iterations.

Spacing Regularity in Collinear Arrangements Within
Color Groups. Finally, we evaluated whether people systemati-
cally report objects along a line to be regularly spaced. Such a regu-
larity would manifest as equidistant spacing among objects, as

opposed to random dispersion. Measuring the extent to which objects
are equidistantly spaced is equivalent to measuring the variability of
the pairwise distance between the objects. We projected the dots in
the collinear color group onto its first eigenvector and normalized the
projected locations on a scale of O to 1. The normalized projected
locations are used to calculate the standard deviation of the pairwise
distances (see Figure 13A). Smaller standard deviation implies that
the arrangement of dots has more equidistant spacing.

We examined the spacing regularity on the most collinear
groups (25% of the data) whose PC ratios are greater than 14. We
found that variability of the pairwise distances decreased across
the serial reproduction chains (b = —.0065; CI 95% [—.0077,
—.0054]) and the spacing of the dots significantly differed from
the randomly spaced baseline arrangement (see Figure 13B). It
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Figure 12
Analysis of Orientation Similarity
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Note. (A) Normalized vector sum. The direction of the first eigenvector represents the orientation of each color group. Because
the vector direction and its opposite direction can both represent the same orientation, we choose the vector combination that
maximizes the vector sum. The vector sum is normalized by the group number so that the max vector sum equals one indicating
perfect alignment. A larger normalized vector sum implies more consistent orientations among color groups. (B) Mean normal-
ized vector sum. Each dot represents the mean vector sum given the iteration where all 3 groups are oriented with an anisotropy
ratio greater than 2. Error bars indicate SEM. The purple ribbon represents the estimated 95% confidence band of the means by
simulations of 3 randomly oriented vectors conditioned on the sample sizes given the iterations (sample size varies across itera-
tions). The green dots indicate the orientations of the color groups are significantly more similar than chance. The significant pos-
itive slope suggests that the color groups tend to be increasingly arranged in similar orientations across serial reproduction
chains. (C) Orientation similarity in iterations where all 3 groups are oriented with an anisotropy ratio greater than 2, binned by
the average anisotropy ratio of the three groups (x-axis). The higher the mean anisotropy on a given trial, the more line-like the
groups in that trial (by definition) are, and the more the orientations are among the 3 groups (y-axis). Each dot represents the av-
erage normalized vector sum of all trials in a given bin, and error bars indicate =1 SEM. The purple ribbon represents the esti-
mated 95% null hypothesis interval, obtained by simulating 3 randomly oriented vectors with the same number of simulated
trials as represented in the bins (n = 343 trials). Red dashed line is the mean of the null sampling distribution. When the dots are
reported in 3 highly anisotropic (oriented) groups, those groups tend to be reported as parallel. See the online article for the color
version of this figure.
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implies that visual memory for the locations of dots in these collin-
ear structures are biased toward regular spacings.

Discussion

Experiment 1 suggests that memory reproductions tend toward
clustered spatial arrangements. However, when cluster member-
ship is only indicated by the spatial arrangement, we cannot

independently estimate which cluster a given object belongs to,
and what the within-cluster spatial memory biases are. Conse-
quently, the goal of Experiment 2 was to induce grouping inde-
pendently, by introducing a salient color feature, and investigate
the within-group and between-group spatial configuration biases.
First, we confirmed that serial reproduction chains converged to-
ward increasingly compact color-specific groups, indicating that
object color was an overwhelming grouping cue (Quinlan &
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Figure 13
Analysis of Spacing Regularity
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Note. (A) Measure of spacing variability. Dots from linear color groups

are projected onto the first Eigenvector and the standard deviation of pair-
wise distances between the projected locations measure how equidistantly
spaced the dots are. (B) The change of spacing variability across chains.
Purple ribbon represents the 95% confidence interval of the mean SD of
pairwise distances estimated by simulating uniformly distributed dots on
a unit vector conditioned on sample size for a given iteration. The green
dots indicate significant deviance from the random baseline. Overall, the
spacing variability decreases and objects tend to be arranged in equidis-
tant spacing in the collinear structures. See the online article for the color
version of this figure.

Wilton, 1998; Wertheimer, 1938), and that color-grouped objects
were recalled with increasing spatial compactness. The color-spe-
cific grouping structure is consistent with Boolean map theory
which explains visual attention is constrained to access only a sin-
gle feature (e.g., green) associated with multiple spatial locations
at one moment (Huang & Pashler, 2007). Color-specific configura-
tion allows “chunking” of locations that form compressed repre-
sentations (Brady et al., 2009; Cowan, 2001). Because working
memory is severely capacity-limited, the configuration-chunking
strategy may greatly enhance processing efficiency (Jiang et al.,
2000) and bias the spatial locations of the objects. Within color
groups, visual memory reconstructed groups into more regular col-
linear structures. Previous research suggests that people are very

sensitive to collinearity as cue to the presence of ecologically real-
istic contours (Schwarzkopf & Kourtzi, 2008). The anisotropic
groups that manifest weak collinearity are biased toward strong
collinear structures in favor of more ecological realistic arrange-
ments. Thus, such canonical representations of collinear ensemble
structures may reflect the sensitivity to collinearity. Between col-
linear color groups, color groups in the same iteration had increas-
ingly similar orientations across the serial reproduction chains.
Within collinear color groups, locations of dots that formed the
collinear groups were biased toward collinear arrangements with
equidistant spacings. These biases suggest that the visuospatial
working memory system capitalizes on the regularities that create
redundancies in order to encode more items (Brady et al., 2009;
Cover & Thomas, 1991).

General Discussion

Using a serial reproduction task, we revealed structures people
use to represent the spatial arrangement of objects. In Experiment
1, we examined memory for locations by asking participants to
recall the locations of objects in a serial reproduction task. We
showed that people misremembered specific items toward a glob-
ally compact structure, and organized them into clustered spatial
groups. In Experiment 2, we first confirmed that discrete color fea-
tures explicitly introduce color-contingent spatial configuration.
By analyzing color groups, we circumvented the grouping uncer-
tainty in Experiment 1 and further revealed that people compress
color groups into dot line segments with similar orientations and
equidistant spacing.

Serial Reproduction Paradigm

Bartlett’s “serial reproduction” experiments (Bartlett, 1932)
were the first psychological investigation to examine how memory
biases influence information transmission. The method has been
extended to study language evolution (Griffiths & Kalish, 2005;
Kirby, 2001; Kirby et al., 2008), cultural transmission (Atran,
2001, 2002; Mesoudi, 2007), inductive biases in function learning
(Kalish et al., 2007), category structures (Sanborn et al., 2010) and
spatial memory biases (Langlois et al., 2021). However, there is
an important distinction between a serial reproduction paradigm,
as employed here, and the MCMC with people paradigm (Sanborn
et al., 2010). MCMC with people sets up the proposal and accep-
tance distributions in such a way as to guarantee that the chains
would converge to a stationary distribution that matches the prior.
This is not the paradigm we employed, since our proposal and ac-
ceptance distributions are not controlled, and are entirely deter-
mined by subjects. Instead, we employ a serial reproduction
paradigm, which does not converge to a stationary distribution that
matches the prior, but by emphasizing and exaggerating inductive
biases through the process of repeated noisy reproduction, wherein
each noisy step offers another opportunity for biases to intervene
(e.g., Huttenlocher et al., 2000; Hemmer & Steyvers, 2009),
reveals structures people use to help encode the displays. Conse-
quently, stationarity and convergence are not prerequisites for
learning about the structures that lead to better encoding of the dis-
play from a serial reproduction paradigm. More formally, the dis-
tribution toward which the serial reproduction chains are
converging are not unimodal in the space of positions, but are
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lower entropy in the space of all possible positions: Consider start-
ing with a uniform distribution over all pixel images and converg-
ing to images of English letters — while the English letters are all
qualitatively different, the distribution of images that contain Eng-
lish letters is much lower entropy than the distribution of all pixel
images. So convergence toward easier-to-encode displays (for new
participants), as we found here, is entirely possible while maintain-
ing many modes and qualitative differences across chains. Despite
the diversity and idiosyncrasy of the patterns in the serial repro-
duction chains, our analyses reveal some salient and consistent
structural characteristics that people use to represent displays in
visuospatial memory. Thus, our study further confirms the fruitful
application of the serial reproduction paradigm in revealing struc-
ture in human cognition.

Implications for Structured Priors in Visuospatial
Working Memory

In contrast to the traditional assumption that objects in visual
memory are encoded independently (Anderson et al., 2011; Bays
& Husain, 2008; Zhang & Luck, 2008), our results indicate that
people appear to encode higher-order hierarchical ensemble struc-
tures (Orhan & Jacobs, 2014b) that biases spatial locations of
objects. Working memory capacity is highly limited, the more
items there to encode and store, the fewer bits there are available
to represent each one (Neisser, 2014). People can utilize such
structured representations that encode a set of objects to cope with
limited capacity rather than simply reducing the resolution of local
representation (Ariely, 2001; Brady & Tenenbaum, 2013). From
our results, it appears that such structures bias the locations of
objects into globally compact clustering structures and individual
color dots are attracted and compressed into color-specific clusters.
By encoding the whole set and “chunks,” the configuration-chunk-
ing strategy greatly enhances processing efficiency by forming
compressed representations (Brady et al., 2009; Cowan, 2001;
Jiang et al., 2000). Moreover, biasing the recall of locations to-
ward the center of sets can compensate for uncertainty and aid
recall (Lew & Vul, 2015).

Furthermore, the emergence of color-specific grouping structures
may reflect the inferences or predictions of partial data due to the
limited working memory capacity and this ability depends on the
existence of statistical dependencies in natural images (Kersten,

Figure 14

1987; Hansmann-Roth et al., 2021). For example, in a natural
scene, colors of proximate locations are likely to be similar. The
statistical priors about spatial configurations of similar colors bias
the inferences of the locations when partial information is available.

Implications for Regularities in Visuospatial Memory

According to information theory, more information can be
stored if there are redundancies in the input in an optimal system
(Cover & Thomas, 1991). In other words, creating redundancies
makes it possible to encode more items within a limited capacity.
The collinear structure bias, orientation similarity and spacing reg-
ularity all reflect the tendency of generating redundancy to cope
with limited working memory. For examples, biasing the aniso-
tropic structure toward a more collinear arrangement shrinks the
variance on the PC2 and generates redundancy in the set of possi-
ble projected distances from the object locations to the PC2; spac-
ing regularity in collinear structures produces spacing redundancy
along the direction of PC1; orientation similarity increases redun-
dancy in the set of possible orientations for groups. Removal of re-
dundancy forms compressed and simplistic representations,
allowing more items to be stored more accurately in memory
(Brady et al., 2009). These results are consistent with the view
(Attneave, 1954; Barlow, 1959) that a principal mission of biolog-
ical vision may be to encode the visual image into a less redundant
form. For example, eigenvector transformation of face images
facilitates a large reduction of dimensionality which may be useful
for economical representation and efficient retrieval (Sirovich &
Kirby, 1987).

Visual system has evolved to utilize statistical regularities in the
environment for extracting shape information from the noisy sen-
sory input. Behavioral and computational work suggests that
observers are better at detecting collinear edges (i.e., edges aligned
along a path) (Dakin & Hess, 1997; Field et al., 1993; Hess &
Field, 1999) that cooccur frequently and form contours in natural
images (Geisler, 2008; Geisler et al., 2001; Sigman et al., 2001).
We found that the anisotropic groups are increasingly biased to-
ward linear grouping structures. The sensitivity to collinearity may
drive the anisotropic groups that manifest weak collinearity to be
biased toward strong collinear structures in favor of more ecologi-
cally realistic arrangements.

Examples of Sophisticated Structures That We Were Unable to Account for Through Our Analyses

Seed 10,Chain 6, lteration 7 Seed 5,Chain 2,lteration 13

Seed 7,Chain 4,lteration 20 Seed 10,Chain 9,lteration 14
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Limitations and Future Directions

Our results, by no means, exhaustively capture the structures
used in visuospatial memory. Specifically, we only focus on the
most basic and general structures such as clustering and collinear-
ity. However, observers frequently encode objects in complex
shapes in the real-world. Likewise, a quick glance at responses in
later iterations of our studies reveals structures like letters and
shapes that suggest the use of long-term knowledge (Figure 14 dis-
plays several particularly notable structures). Although we were
able to capture much of how people grouped and organized objects
in visual memory, there are potentially many more complex and
richer structures that are embedded in our data. Moreover, the pat-
terns of convergence in our study demonstrate that observers’
have at least some shared structures they use to store items. Future
work may further examine how observers represent the display
using basic representational units like individual elements and
ensembles to more sophisticated structures like parts of objects,
whole objects and scenes (Biederman, 1987; Orhan & Jacobs,
2014b; Palmer, 1977). We have made all of our data and analysis
code available for others to explore to identify further systematic
structures that emerge through serial spatial memory reproduction.
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