
You Cannot “Count” How Many Items People Remember in Visual
Working Memory: The Importance of Signal Detection–Based Measures

for Understanding Change Detection Performance

Jamal R. Williams, Maria M. Robinson, Mark W. Schurgin, John T. Wixted, and Timothy F. Brady
Department of Psychology, University of California, San Diego

Change detection tasks are commonly used to measure and understand the nature of visual working
memory capacity. Across three experiments, we examine whether the nature of the memory signals
used to perform change detection are continuous or all-or-none and consider the implications for proper
measurement of performance. In Experiment 1, we find evidence from confidence reports that visual
working memory is continuous in strength, with strong support for an equal variance signal detection
model with no guesses or lapses. Experiments 2 and 3 test an implication of this, which is that K should
confound response criteria and memory. We found K values increased by roughly 30% when criteria
are shifted despite no change in the underlying memory signals. Overall, our data call into question a
large body of work using threshold measures, like K, to analyze change detection data. This metric con-
founds response bias with memory performance and is inconsistent with the vast majority of visual
working memory models, which propose variations in precision or strength are present in working mem-
ory. Instead, our data indicate an equal variance signal detection model (and thus, d’)—without need for
lapses or guesses—is sufficient to explain change detection performance.

Public Significance Statement
Visual working memory is an essential, capacity-limited system that has been linked to many cogni-
tive abilities such as fluid intelligence and reading comprehension. Because of its importance,
researchers need valid measures of its capacity that separate true differences in memory perform-
ance from other factors, like participants’ response strategies. Here we show that the most common
measure of visual working memory capacity does not accurately separate response strategy from
memory performance. We demonstrate this by showing we can artificially inflate estimates of
capacity using this metric with a simple instruction change, which should have no effect on mem-
ory. We show an alternative metric is more accurate and suggest it should be used instead. These
findings call into question research that has used this flawed metric to make connections between
working memory capacity and other cognitive functions.

Keywords: discrete-slots, models of memory, proper measurement, signal detection theory, visual
working memory capacity

Working memory and its capacity constrains our cognitive abilities
in a wide variety of domains (Baddeley, 2000). Individual differences
in capacity and control predict differences in fluid intelligence, reading

comprehension, and academic achievement (Alloway & Alloway,
2010; Daneman & Carpenter, 1980; Fukuda et al., 2010). These exten-
sive links to various cognitive abilities make the architecture and limits
of working memory of particular interest to many fields of study (e.g.,
Cowan, 2001; Miyake & Shah, 1999). One especially well studied
component of this system is visual working memory, which holds
visual information in an active state, making it available for further
processing and protecting it against interference. This memory sys-
tem has an extremely limited capacity: We struggle to retain accu-
rate information about even three to four visual objects for just a
few seconds (Luck & Vogel, 1997; Ma et al., 2014; Schurgin, 2018;
Schurgin et al., 2020).

Over the past 20 years, a vast number of studies have investigated
important issues in visual working memory. For example, many
researchers have focused on how flexibly we can allocate our work-
ing memory resources to different numbers of objects (e.g., “slots”
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vs. “resources”; Alvarez & Cavanagh, 2004; Awh et al., 2007) and
whether different features of these objects are “bound” or stored sep-
arately (e.g., Baddeley et al., 2011; Luck & Vogel, 1997). Another
major area of work has demonstrated that visual working memory
capacity, even for simple displays (Figure 1a), is predictive of fluid
intelligence as well as a host of other important cognitive abilities
(Fukuda et al., 2010; Unsworth et al., 2014). Overall, significant pro-
gress has been made in understanding the nature of this memory sys-
tem (e.g., Brady et al., 2011).

Change Detection Cannot Unambiguously Measure
Memory Performance

However, many of the core conclusions about the nature of vis-
ual working memory come from tasks known as change detection
tasks. These tasks are a variant of an “old/new” recognition mem-
ory paradigm in which participants are probed on their memory by
being asked “Did you previously see this item?” or are prompted
to identify an item as either “old” or “new.” In a typical visual
working memory display (see Figure 1), participants see several
simple, isolated objects on a solid color background and are asked
to hold these items in mind before being asked to detect whether a
particular object changed after a brief delay (Luck & Vogel,
1997).1 Despite their ubiquity, change detection tasks cannot pro-
vide an unambiguous estimate of memory performance because
any measure of performance from this task relies on assumptions
about the distribution of memory signals which are often false and
regularly unverified (see Brady et al., 2021).
Because change detection tasks provide two relevant measures

of performance, hit rate (calling “same” items “same”) and false
alarm rate (calling “different” items “same”), memory researchers
must combine them to get a unified measure of performance. This
introduces significant ambiguity into memory measurement since
there are several choices for how to combine hits and false alarms
into a quantitative measure of performances (e.g., d, A’, K values,

percent correct, etc.), all of which rest on different, and sometimes
incompatible, theoretical and/or parametric assumptions (for a
review, see Brady et al., 2021).

One of the most common ways to combine hits with false alarms
is to use “K” values (N * [hit rate � false alarm rate]), where N is
the number of objects shown (Cowan, 2001; see also Pashler, 1988;
Rouder et al., 2011). This metric, which is technically based on
double high-threshold theory (Rouder et al., 2011), attempts to mea-
sure “how many objects” or “items” people remember and, because
this is a particularly intuitive concept, it has ended up being
extremely prevalent in the study of visual working memory (for
example, Alvarez & Cavanagh, 2004, 2008; Brady & Alvarez,
2015; Chunharas et al., 2019; Endress & Potter, 2014; Eriksson
et al., 2015; Forsberg et al., 2020; Fukuda, Kang, & Woodman,
2016; Fukuda, Woodman, & Vogel, 2016; Fukuda et al., 2010;
Fukuda & Vogel, 2019; Hakim et al., 2019; Irwin, 2014; Luria &
Vogel, 2011; Ngiam et al., 2019; Norris et al., 2019; Pailian et al.,
2020; Schurgin, 2018; Schurgin & Brady, 2019; Shipstead et al.,
2014; Sligte et al., 2008; Unsworth et al., 2014, 2015; Vogel &
Machizawa, 2004; Woodman & Vogel, 2008).

However, despite the seemingly straightforward nature of K val-
ues, they depend on strong theoretical claims, just like any-and-all
ways of combining hits and false alarms into a unified measure
(Brady et al., 2021). These foundational claims—which are in con-
flict with a wide variety of accepted theories of working memory—
deeply affect estimates of memory performance and the conclusions
made based on K values. K is a slight variation on adjusted hit rate,
percent correct and other measures that are all derived from a class
of models called threshold models (Swets, 1986). K values rest on
the assumption that memories are all-or-none: Items are either
remembered in a way that is perfectly diagnostic, or not remem-
bered at all. Under such a view, false alarms arise when there is
zero information about an item in memory (i.e., they represent pure,
informationless “guesses”) and, because false alarms tell you how
often a participant was “guessing,” they can be used to adjust the
hit rate for “lucky guesses” (hence the hits minus false alarms as-
pect of the K formula). Therefore, for K values to provide a valid
measure of performance it must be the case that memories are never
weak or strong but are perfectly described by being either com-
pletely present or completely absent. This point applies to all var-
iants of K measures since they all rest on the same theoretical
foundation (Cowan, 2001; Pashler, 1988; Rouder et al., 2011).

The processing assumptions of such a threshold model is at
odds with a variety of findings from contemporary visual working
memory studies and with nearly all visual working memory theo-
ries. Indeed, mainstream working memory models based on con-
tinuous reproduction data, rather than change detection data,
accept the fact that memories vary in their precision: for example,
an item is remembered more precisely at set size 1 than set size 3
(Bays et al., 2009; Schurgin et al., 2020; van den Berg et al., 2012;
Zhang & Luck, 2008). In addition, when participants express lev-
els of confidence in their memory, variation in confidence tracks
both how precisely an item is being remembered and how likely
people are to make large errors (Fougnie et al., 2012; Honig et al.,

Figure 1
Change Detection Tasks Have Been Critical to Nearly All Areas
of the Visual Working Memory Literature, From Early Work by
Luck and Vogel (1997) Arguing for Object-Based Limits on
Working Memory Capacity; to Later Work Arguing for Important
Effects of Object Complexity (Alvarez & Cavanagh, 2004); to
Work Investigating Benefits of Knowledge About Real-World
Objects to Performance (e.g., Brady et al., 2009)

Note. See the online article for the color version of this figure.

1 In the current work we will not consider the more complicated
scenario where all items reappear and all could have changed, though the
fundamental concern with threshold modes like K raised here applies
equally in such experiments.
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2020; Rademaker et al., 2012). The combination of variation in
precision with variation in confidence suggests that memories vary
continuously in how strongly they are represented and that partici-
pants are aware of this variation in memory strength (see Schurgin
et al., 2020). Theories where memories vary in precision or
strength and participants have access to this precision or strength
to make their decision undermine the foundational and irrevocable
principles of the K metric and, therefore, make it an inappropriate
metric for estimating memory performance. That is, K as a metric
is based on the idea that memories either exist or do not exist, but
variation in precision is critical to both models that do (Adam
et al., 2017; Zhang & Luck, 2008) and do not (Bays, 2015; Schur-
gin et al., 2020; van den Berg et al., 2012) subscribe to “item lim-
its” or some form of “slots.” Thus, whereas the use of K as a
measure is extremely common, it appears to be at odds with the
theories of nearly all visual working memory researchers.
In contrast to threshold metrics like K, variations in the preci-

sion of memory are naturally accommodated by Bayesian and sig-
nal detection-based models of memory that assume some axis of
variation between memories that is used to make decisions about
whether an item has been seen before or not (e.g., Schurgin et al.,
2020; Wilken & Ma, 2004). Under a signal detection framework,
memories are seen as continuously varying along an axis of
strength of some kind, with decisions about whether an item has
been seen made by applying a criterion to this axis. As a memory
signal elicited by an item increases it becomes ever more distin-
guishable from noise, and this gives rise to confidence—as mem-
ory signal increases so too does confidence—and an observer’s
decisions are based on criteria that they set based on their own
confidence (see Wixted, 2020). This view denies the notion that
memories are all-or-none, present or absent, instead seeing memo-
ries as varying in some way (e.g., in “precision” or “strength”).
Variations on this signal detection framework have played a major
role in nearly all long-term recognition memory research for over
fifty years (e.g., Benjamin et al., 2009; Glanzer & Bowles, 1976;
Heathcote, 2003; Kellen et al., 2021; McClelland & Chappell,
1998; Shiffrin & Steyvers, 1997; Wixted, 2020; Wickelgren &
Norman, 1966).
Once a model is used that is based on the idea that memories

vary continuously and participants use this variation (e.g., in preci-
sion or strength) to make their decisions, the most natural decision
is to simply apply this model to all trials without introducing any
separate processes (like lapses or guesses). Thus, while signal
detection-based models that also include lapses or guesses are pos-
sible (e.g., Xie & Zhang, 2017), in their most basic form, signal
detection models generally do not involve the extra assumption
that “guesses” are a discrete and separate state of memory, instead
postulating that decisions are always made based on the same con-
tinuous signals, and that errors arise from the stochastic, noisy na-
ture of these signals.2 Such signal detection–based views naturally
accommodate the subjective feeling of “guessing” as a state of
very low confidence, with nearly no likelihood of correct discrimi-
nation of signal from noise, but they do so purely based on varia-
tions along a single axis of memory signals. That is, in a signal
detection based account, people should often feel as though they
are guessing, even though there is no separate guess state (e.g.,
Schurgin et al., 2020).
Broadly speaking, then, signal detection-based accounts are neces-

sary for accurate measurement if items vary in some way (e.g.,

precision) and participants use this variation in their decision process,
rather than all memories being equally precise and exactly the same (as
assumed by threshold theories). However, in the visual working mem-
ory literature most signal detection based accounts do not postulate a
separate guess or lapse state—that is, most signal detection models in
the literature presume memories just vary continuously in a single axis
that people use to make decisions (e.g., Schurgin et al., 2020; Wilken
& Ma, 2004; but see Xie & Zhang, 2017). An account based on this
simplest signal detection account with just a single axis and no added
lapses or guesses has recently been shown to straightforwardly accom-
modate error distributions from not only change detection and forced-
choice tasks but also continuous reproduction tasks in visual working
and visual long-term memory tasks (Schurgin et al., 2020).

How does one measure performance in a signal detection-based
view of memory, other than model fitting? The most common sig-
nal detection measure of memory strength is d0, which rests on the
assumption that the distribution of memory signals for previously
seen and previously unseen items are both equal in variance and
approximately normal (Macmillan & Creelman, 2005). This mea-
sure is appropriate only if there is no “guess” or “lapse” state, and
all memories are items are approximately equally well encoded. It
is no more complex than K: rather than subtracting hits and false
alarms, d0 simply requires you subtract them after a simple transfor-
mation (the inverse of the normal distribution). However, d0 only
applies to the simplest signal detection models without any varia-
tion in strength or lapses. More complex signal-detection-based
measures are also possible if these assumptions do not hold for a
particular situation (e.g., da; Macmillan & Creelman, 2005) or if
memory is a mixture of continuous decisions and lapses or guesses
(e.g., Xie & Zhang, 2017).

In summary, if memories vary in precision or strength, K values
will confound response bias with underlying memory, leading to
spurious estimates of working memory capacity that vary with
changes in response strategy (i.e., criterion; how liberally or conser-
vatively one responds to a change). An alternative framework based
in signal detection allows for a very broad set of possibilities,
including lapses/guesses in addition to precision variation (Xie &
Zhang, 2017), or variability in memory strength between items
(e.g., da; Macmillan & Creelman, 2005), but the simplest form of
this view simply postulates that all decisions are made based on a
single set of equal variance memory signals (which leads to the d0

metric). Thus, determining the nature of memory signals in change
detection, and the extent to which they are all-or-none, is deeply
related to the question of whether K or d0 or neither is a valid mea-
sure of change detection performance that isolates memory from
the decision-making process and response bias.

ROC Curves Elucidate the Appropriate Way to
Measure Performance

How then can these theories, and their associated metrics, be
evaluated and compared? Is memory all-or none? Is it more useful

2 To be clear, this assumption applies to trials where the participant is
“on task.” There could be a small set of trials where participants’ eyes were
genuinely closed or they clicked accidentally, which would result in true
guesses, but such true 0 signal trials are likely very rare (e.g., traditional
psychophysical curve fitting generally assumes approximately a 1%—and
no more than a 5%—lapse rate; Wichmann & Hill, 2001).
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to think about “guessing” as a distinct state, or more useful to
think about a single continuum of memory strength and response
bias? The critical test that tells these models apart, and determines
which model to embrace, is the shape of the receiver operating
characteristic (ROC) predicted by these models (Brady et al.,
2021; Swets, 1986; Wickens, 2001). ROCs measure what happens
to performance—in terms of hits, on the y axis, and false alarms,
on the x axis (Figure 2)—as an observer becomes more or less
likely to say “old” (or “no change” in change detection tasks), that
is, as their response criterion changes. If an individual’s true ROC
could be perfectly measured, without measurement noise or reli-
ance on simplifying and auxiliary assumptions, it would provide a
direct window into the latent distribution of memory signals, and
thus reveal which view of memory is correct. As a result, the im-
portance of measuring and comparing ROCs has been identified
and embraced in a wide range of fields including decision-making,
health care, and artificial intelligence (Fawcett, 2006).
In the current work, we seek to evaluate which of these views of

latent memory signals (continuous vs. discrete) is accurate and
should be used to measure performance. To do so, we first need to
determine the shape of the ROC that each model would predict:
All-or-none threshold models (where memories cannot vary in
precision or strength), like the one used to calculate K values, pre-
dict a linear ROC (see Figure 2) because guessing contributes to
both hits and false alarms equally (thus generating a linear slope
as a function of changes in response criterion) whereas remem-
bered items only contribute to hits (which determines the func-
tion’s intercept; Luce, 1963; Krantz, 1969; Swets, 1986). On the
other hand, the simplest signal detection-based models without
any lapses or guesses predict a symmetric curvilinear ROC
because as criteria change to include weaker and weaker signals,
some previously seen and some never-before-seen items get
included in the overall distribution in a nonlinear fashion (this
nonlinearity follows from the standard parametric assumption that
the latent distribution of memory signals is continuous and nonrec-
tangular; Macmillan & Creelman, 2005; Swets, 1986; Wixted,
2020). More complex ROC curves are also possible for signal

detection-based models that do not treat all memories as arising
from the same simple process with a fixed memory strength across
all items (e.g., unequal variance signal detection models; Wixted,
2007; models with a subset of all-or-none memories: Yonelinas,
2002; models with all-or-none guessing: Xie & Zhang, 2017; etc.).

To measure the full ROC we need some way to measure
response criterion. Typically, this is done either by eliciting confi-
dence from participants on each trial or by manipulating response
bias across different blocks of an experiment, usually by changing
how often items are genuinely old versus new. In the study of long-
term recognition memory, when trying to characterize the source of
memory signals and their variability, confidence-based ROCs (e.g.,
where you simply ask people the strength of their memory on a Lik-
ert scale) are ubiquitous and are effectively standard practice when
performing old/new memory tasks (e.g., Benjamin et al., 2013;
Hautus et al., 2008; Jang et al., 2009; Koen et al., 2017; Wixted,
2007; Yonelinas, 2002; Yonelinas & Parks, 2007). However, visual
working memory researchers have often avoided collecting confi-
dence-based ROC data and instead look to manipulate response
bias by changing the prior probability of a “same” vs. “change”
response (Donkin et al., 2014, 2016; Rouder et al., 2008; though
see Robinson et al., 2020; Xie & Zhang, 2017). While results from
response bias manipulations used to measure ROCs have varied—
embracing both threshold and signal detection views at different
times (e.g., Donkin et al., 2014, 2016; Rouder et al., 2008)—our
own recent work suggests this is largely because the data in those
studies are not particularly diagnostic (e.g., being very limited in
their range of response bias values) and because the model compari-
son metrics used by the studies were not validated to ensure that
they adequately recover the correct model when using simulated
data (Robinson et al., 2022). By contrast, data from confidence-
based ROCs of change detection in working memory are unequivo-
cal: ROCs have always been found to be curvilinear and most
consistent with equal variance signal detection models (Robinson
et al., 2020; Wilken & Ma, 2004; see also Xie & Zhang, 2017, who
find visually equal variance curves but do not test this class of
model directly).

Figure 2
ROC Curves of Memory Performance Predicted by the Two Models

Note. ROC = receiver operating characteristic. A threshold model of working memory (e.g.,
K) predicts that ROC curves should be linear, because remembered items contribute only to hit
rate, whereas forgotten items contribute to both hit rate (from lucky guesses) and false alarm
rate (from unlucky guesses). By contrast, the most straightforward signal detection theories
without lapses or guesses dictate that while, on average, previously seen items feel more famil-
iar than previously unseen items (by an amount denoted by d0), noise corrupts the familiarity
signal for both previously seen and previously unseen items, which leads to an overlap of famil-
iarity strengths. Thus, the ROC should be curvilinear if all items are represented with approxi-
mately equal d0, and so the variation in familiarity is the same for previously seen and
previously unseen items, the curves should also be symmetric, as shown here.
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Notably, identifying and characterizing the shape of these
curves is critical for distinguishing all-or-none and continuous
memories, but also for proper measurement of memory in change
detection tasks. For example, the threshold-based model of memory
predicts that all points on the line in Figure 2A reflect the same esti-
mate of capacity whereas the equal variance signal detection model
predicts that all points on the curve in Figure 2B reflect the same
level of memory strength. Although there are areas where these func-
tions overlap (particularly in the middle), they substantially diverge
toward the extreme ends of the spectrum—and consequently give
very different senses of which combinations of hits and false alarms
correspond to the same levels of performance for subjects or condi-
tions that happen to differ in response bias.
Thus, independent of arguments about the nature of the underly-

ing memory signals, a strong understanding of the shape of ROCs
in change detection tasks is critical to the simple act of computing
performance and comparing it across conditions. In fact, a common
critique of threshold models of long-term memory is that they may
confound variations in response bias with variations in memory
states, as ROCs in long-term memory are nearly always curvilinear
(e.g., Rotello et al., 2015). If K values confound response bias with
performance, as they would if memories genuinely vary in preci-
sion (e.g., Bays et al., 2009; Zhang & Luck, 2008) and thus ROCs
are curvilinear, then this would potentially undermine a large body
of work that even partially relies on K to draw strong conclusions
about the nature of visual working memory (for example, Alvarez
& Cavanagh, 2004, 2008; Brady & Alvarez, 2015; Chunharas
et al., 2019; Endress & Potter, 2014; Eriksson et al., 2015; Forsberg
et al., 2020; Fukuda & Vogel, 2019; Fukuda et al., 2010; Fukuda,
Kang, & Woodman, 2016; Fukuda, Woodman, & Vogel, 2016;
Hakim et al., 2019; Irwin, 2014; Luria & Vogel, 2011; Ngiam
et al., 2019; Norris et al., 2019; Pailian et al., 2020; Schurgin &
Brady, 2019; Shipstead et al., 2014; Sligte et al., 2008; Starr et al.,
2020; Unsworth et al., 2014, 2015; Vogel & Machizawa, 2004;
Woodman & Vogel, 2008).

The Current Work

In the current work we address the possibility that K confounds
response bias with performance in a novel way and with minimal
reliance on model comparison or other assumptions. We also test
whether the simplest equal variance signal detection model (and
thus, d0) is a valid metric of performance in this task, or whether a
more complex ROC must be assumed (e.g., with both signal detec-
tion and lapses). In Experiment 1, we first measure confidence-
based ROCs in a typical visual working memory change detection
task to provide a baseline for simulations and for the core experi-
ment, Experiment 2. We find that confidence-based ROCs are cur-
vilinear and extremely consistent with the prediction of an equal
variance signal detection model (replicating the results of Robin-
son et al., 2020). As part of our modeling and analysis, we also
describe evidence against views that challenge the interpretation
of curvilinear ROC functions constructed from confidence ratings.
Next, in a simulation, we investigate how each metric would vary
if these curvilinear ROCs genuinely reflect the latent memory
strength distribution of participants, consistent with the most
straightforward equal variance signal detection theory model of
working memory performance (Schurgin et al., 2020; Wilken &
Ma, 2004). We find that K should drastically misrepresent true

memory in this scenario. For example, K wildly underestimates
performance for subjects with conservative response criteria (e.g.,
for participants who rarely say “same” unless very confident) and
such participants are quite common in existing large-scale data
sets at high set sizes (Balaban et al., 2019).

In Experiment 2, a novel and preregistered study, we examined
whether estimates of K spuriously varied across manipulations of
response bias in a way that does not depend on model comparisons
or confidence to assess latent memory strength. In particular, we
compare K and d0 in a completely standard change detection experi-
ment with performance in a different, across-participant condition
where participants are adaptively encouraged to shift their response
bias if it is excessively conservative. We find that these adaptive
instructions increase estimates of K by a large factor (e.g., they
“improve” working memory capacity, as measured by K, by 30%)
but produce no such effect when performance is measured with d0.
This provides strong evidence that the latent distribution of memory
signals is best captured by the curvilinear ROC that is implied by
equal variance signal detection models and implores the use of d0

(see Figure 2). Furthermore, this result adds experimental evidence
against the existence of all-or-none memories and the use of K val-
ues. In Experiment 3, we replicate our critical result in another pre-
registered study with a different set size and with the addition of a
visual mask. This experiment demonstrates the generality of our
results across memory load demands and rules out the contribution
of alternative memory processes (e.g., iconic memory). Overall, we
suggest that a major rethinking of conclusions based on K values or
other threshold measures is required for cumulative progress to be
made in understanding visual working memory. Furthermore, we
by showing that d0 appears to be a reliable measure of memory
even across changes in response criterion, we provide evidence in
favor of the simplest equal variance signal detection model (e.g.,
Schurgin et al., 2020) and evidence against models based on a mix-
ture of signal detection and guesses/lapses.

Experiment 1: Receiver Operating Characteristics in
Change Detection

While confidence-based ROCs are prevalent in long-term recog-
nition memory experiments using the old/new paradigm they are
rarely examined in visual working memory, with few exceptions
(e.g., Robinson et al., 2020; Wilken & Ma, 2004; Xie & Zhang,
2017). This experiment was designed to collect such data in a pro-
totypical visual working memory task using change-detection with
a large number of confidence bins (see Figure 3). This provides a
replication of previous work and serves as the basis for the simula-
tions that motivated our critical test of signal detection vs. thresh-
old views in Experiment 2.

Method

Participants

All studies were approved by the Institutional Review Board at
the University of California, San Diego, and all participants gave
informed consent before beginning the experiment. Experiment 1
tested 70 undergraduate volunteers in our lab at UC San Diego, in
exchange for course credit. Our final sample of 67 participants
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allowed us to detect a within subject effect as small as dz = .18
with power = .8 and an alpha of .5.

Stimuli

Both experiments used a circle in CIE L*a*b* color space, cen-
tered in the color space at (L = 54, a = 21.5, b = 11.5) with a radius
of 49 (from Schurgin et al., 2020).

Procedure

Participants performed 300 trials of a change detection task, 100
at set size 1, 100 at set size 3, and 100 at set size 6. The display
consisted of 6 placeholder circles. Colors were then presented for
500 ms, followed by a 1,000-ms ISI. For set sizes below 6, the col-
ors appeared at random locations with placeholders in place for
any remaining locations (e.g., at set size 3, the colors appeared at 3
random locations with placeholders remaining in the other 3 loca-
tions). Colors were constrained to be at least 15° apart along the
response wheel. After the ISI, a single color reappeared at one of
the positions where an item had been presented. On 50% of trials
each set size, this was the same color that had previously appeared
at that position. On 50% of trials, it was a color from the exact op-
posite side of the color wheel, 180° along the color wheel from the
shown color at that position.
Participants had to indicate whether the color that reappeared

was the same or different than the color that had initially been pre-
sented at that location. After indicating whether the color was the
same or different from the target in the previous array using a key
response, participants then reported their confidence. Participants
were presented an interval from 1–6 and had been instructed that 1
meant very unsure and 6 meant very sure and to report their confi-
dence using the entire scale. It is important to note that defining
the signal in terms of detecting “changes” (i.e., correctly calling
different items “different”) or “no changes” (i.e., correctly calling
same items “same,” as we do throughout) would have no conse-
quences for our results. The results of the metric-based analysis
would be identical regardless of which was defined as a “hit.”
Three participants were excluded for performing near chance

(.2 standard deviations below the mean, according to both K and
d0), leaving a final sample of N = 67.

Data

These data were made available previously to be used in a data-
base that consisted of data from confidence studies (Rahnev et al.,

2020). However, except for being included in that public dataset,
the data have not been previously published or written up.

Results

The ROC data are visually curvilinear, both at the individual
subject level and the group level (see Figure 4). To assess the
shape of the ROCs quantitatively, and thus ascertain the pre-
ferred measurement metric, we performed model comparisons
independently for each participant and each set size.3 We com-
pared three scenarios: (a) a linear, threshold-based ROC, as
needed for K values to be a valid metric, (b) an equal variance
signal detection model, as needed for d 0 to be a valid metric,
and (c) an unequal variance signal detection model, which
would suggest no single metric from a binary change detection
task (“same”/“change” with no confidence) can adequately cor-
rect for response bias (see Brady et al., 2021, for a tutorial). To
compare models we used AIC because model recovery simula-
tions by Robinson et al. (2020) demonstrated that AIC was best
calibrated for recovering the generative model from similar
ROC data. Note, however, that since the threshold-based model
(K) and the equal variance signal detection model (d 0) have
equal numbers of free parameters, comparing their AIC is the
same as comparing their log likelihood directly with no penalty
for complexity, so the use of AIC is relevant only for compar-
ing the unequal variance signal detection model to the other
two models.

Overall, we found strong evidence favoring signal detection-
based models over the threshold model, and further evidence in
favor of the simplest equal variance signal detection model
underlying d 0. A difference greater than 10—which provides 10
to 1 support for one model over the other—is considered con-
clusive evidence in terms of AIC. Despite an equal number of
parameters, the equal variance signal detection model was
strongly preferred to the threshold model, with AIC differences
favoring it by 244.8 at set size 1, 1,479.2 at set size 3, and
1,749.5 at set size 6. These outcomes were also reliable per par-
ticipant, t(66) = 2.81, p = .007, dz = .34; t(66) = 8.74, p , .001,
dz = 1.07; t(66) = 11.96, p , .001, dz = 1.46. The AIC differ-
ence between the threshold model and the unequal variance sig-
nal detection also favored the signal detection model: 188.5,
1,548.7, and 1,694.4 across set sizes. Each of these was also
reliable when calculated per participant instead of summed
over all participants, t(66) = 2.12, p = .038, dz = .26; t(66) =
8.75, p , .001, dz = 1.07; t(66) = 11.61, p , .001, dz = 1.42.
Finally, comparing equal and unequal variance signal detection
models provided support for the equal variance model, validat-
ing d 0 as a valid metric of change detection performance. In
particular, the AIC preference for the equal variance model was
56.3, 30.5 and 55.2 across set sizes; and this preference was
largely reliable across participants as well, t(66) = 6.85, p ,

Figure 3
Experiment 1 Task

Note. Participants completed a change detection task at set sizes 1, 3
and 6 with 180-degree changes on the color wheel. After reporting
whether the test item was old or new (i.e., same or different), participants
then reported the confidence of their decisions on a 1–6 scale (1 = no con-
fidence, 6 = extremely confident), giving an overall 12-point confidence
scale. See the online article for the color version of this figure.

3 Note that it is possible to test other aspects of the K model
simultaneously with testing its shape, like how fixed it is across set sizes (as
done by Rouder et al., 2008). However, this confounds both aspects of the
model—whether ROCs are linear or curvilinear, and whether performance
drops as expected across set sizes (Robinson et al., 2022)—and what we
are interested in is the shape of the ROC within a set size, because this is
what decides whether the Kmetric, the d 0 metric, or neither are valid.
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.001, dz = .84; t(66) = 1.79, p = .077, dz = .22; t(66) = 4.57, p ,

.001, dz = .56.
Evidence for equal variance signal detection as the preferred

model of the ROC data validates the idea that change detection
alone (without confidence ratings) can be used to measure visual
working memory, as long as d0 is used as the dependent measure.
Notably, this is unlike the result typically found in long-term rec-
ognition, where unequal variance signal detection models are
nearly always preferred to equal variance models and thus d0 is
rarely a universally valid metric (e.g., DeCarlo, 2010; Mickes,
Wixted, & Wais, 2007; Starns, Ratcliff, & McKoon, 2012;
Wixted, 2007; Yonelinas, 2002). Symmetric, equal variance ROCs
are consistent with the idea that presented colors are strengthened
to an approximately equal degree across trials, as one would
expect that heterogeneity in added memory strength for different
old items should lead to support for an unequal signal detection
model (because there would be additional variance in familiarity
for seen items compared with unseen items; Jang et al., 2012;
Wixted, 2007). It may be that asking participants to split attention
equally between all items by making them equally likely to be
probed, using simple stimuli that are all approximately equally
attention-grabbing, and presenting them briefly, encourages a
strategy of splitting memory resources relatively equally. Thus,
although d0—and equal variance—are well supported in the cur-
rent task, the use of d0 may not be valid in other conditions, like
sequential encoding (Brady & Störmer, 2022; Robinson et al.,
2020) or when items are differentially prioritized (Emrich et al.,
2017), but has been validated as the appropriate measure here.

Importantly, finding support for an equal variance signal detection
model also provides direct evidence against more complicated
mixture of signal detection theory and guesses or lapses (e.g., Xie
& Zhang, 2017) and provides evidence in favor of models that
view all decisions as arising from a single signal detection process
with no separate guess state (e.g., Schurgin et al., 2020).

Because of the theoretical importance of determining whether
ROCs are symmetric versus asymmetric (for both determining
whether d0 is an appropriate metric and addressing the conceptual
question of whether there is heterogeneity across items in
strength), we also used a nonmodel-comparison–based test to
examine whether there is evidence for equal variance signal detec-
tion model. In particular, we computed z-ROCs by converting the
hit and false alarm rate to z-scores using a normal distribution. We
then fit the z-ROCs with a linear model at set sizes 3 and 6, where
most participants were not at ceiling. Unequal memory strength
between items, as in an unequal variance signal detection model,
results in z-ROC slopes below 1.0, whereas an equal variance
model predicts slopes of 1.0. We find these slopes are very close
to 1.0 even at set size 6 (z-ROC slopes for set size 3: 1.06, SEM =
.18 and set size 6: .96, SEM = .04).

Using further descriptive analysis, we examined whether the z-
ROCs were consistent with threshold or signal-detection models.
Linear z-ROCs are predicted by signal detection theory and curvi-
linear z-ROCs are predicted by threshold theories like K. Thus,
threshold models, but not signal detection models, predict a strong
positive quadratic component when fitting a polynomial model to
the z-ROCs (Glanzer et al., 1999). Because we had significant

Figure 4
Empirical Receiver Operating Curves From Experiment 1

Note. The top panel shows individual data and the bottom panel shows aggregate data. See the online
article for the color version of this figure.
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ceiling effects at set size 1 and 3 in many participants when per-
forming this analysis (which precludes our ability to determine the
z-ROC shape), we conducted this analysis only for the set size 6
data. We found no evidence of the positive quadratic component
predicted by high-threshold models (in fact the mean z-ROC quad-
ratic component trended negative, though not significantly: M =
�.13, SEM = .113, t[52] = 1.28, p = .21).
Another prediction of signal detection models concerns high

confidence misses and false alarms. Signal detection models eas-
ily accommodate—and in many ways naturally predict4—high
confidence false alarms and high confidence misses, especially
because the difference between previously seen and previously
unseen items in familiarity gets smaller (i.e., as memory strength
gets weaker). By contrast, threshold models do not make this pre-
diction and are most consistent with a complete absence of high
confidence false alarms. This is because in such models, false
alarms are typically purported to arise from a distinct process such
as a “guessing state” (Rouder et al., 2008), which participants are
thought to be aware of5 (e.g., Adam et al., 2017). As shown in
Figure 5, we find data consistent with the signal detection view:
there are high confidence false alarms and high confidence misses,
such trials are increasingly prevalent at high set sizes as memory
gets weaker (.67% at set size 1; 3.54% at set size 3; 12.1% at set
size 6), and this difference is reliable across participants (set size 3
. set size 1: t(66) = 6.37, p , .001, dz = .78; set size 6 . set size
3: t(66) = 6.85, p , .001, dz = .84). Although accommodations can
be made to account for high confidence false alarms in a single con-
dition (e.g., by asserting signal-detection-like noise that occurs after
the memory read-out, at the confidence stage; Adam & Vogel,
2017), it is hard to see how to parsimoniously accommodate the
fact that such errors occur only in some set sizes but not others
within a threshold view.
A similar logic calls into question prominent accounts which

have argued that it is possible to explain curvilinear ROCs from
confidence data with all-or-none, threshold memory models (e.g.,

Kellen & Klauer, 2015; Malmberg, 2002; Province & Rouder,
2012). Such models postulate that even when participants are, in
truth, infinitely certain of their response, they nevertheless give a
low confidence response sometimes, for instance, because the pre-
sentation of a confidence scale makes “an implicit demand to dis-
tribute responses” across the scale (Province & Rouder, 2012).
This account, however, does not predict the current data because
participants do not, in fact, spread their responses at all at set size
1; instead they do so only at the highest set sizes (see Figure 6;
nearly all responses cluster at the highest confidence at set size 1).
To account for this pattern, an account based on the idea that peo-
ple seek to distribute their responses despite truly infinitely diag-
nostic memories would have to postulate yet another factor that
explains why this response strategy varies across different set
sizes; perhaps by incorporating even more complex decision-
based components. Our data imply that, for this to work, partici-
pants would have to decide to add such response noise only for
the set size 6 condition, but not for the set size 1 condition. This
seems extremely unlikely and far more complex than simply pre-
suming that participants have access to continuous strength mem-
ory signals that are used to report confidence, which is an a priori
prediction of signal detection accounts of memory (see also Delay
& Wixted, 2021).

Overall, we find clear evidence in favor of curvilinear ROCs
and signal detection–based models, which is wholly inconsistent
with K as a valid metric of working memory performance. Model
comparison suggests the ROCs are best fit by an equal variance
signal detection model, consistent with d0 as the appropriate mea-
sure of memory performance. The support for an equal variance
model goes beyond support for the general class of signal detec-
tion models (which includes ones like mixture models, with addi-
tional guesses; Xie & Zhang, 2017). Instead, these data support a
view where all items are represented with noise, rather than a
model where some items are perfectly present in memory and
others are completely absent in memory. These findings also
reveal the nearly symmetric (equal variance) nature of the ROC
curves, which provides tentative evidence that—in this task—all
items are represented with approximately the same memory
strength, even at set size 6, given the nearly equal-variance nature
of the ROC curves (though this is only indirect evidence; see
Spanton & Berry, 2020).

Simulation: Implications of Confidence-Based ROCs
Reflecting Underlying Latent Memory Strength

We next turn to the potential implications of K values—and
other threshold metrics, like percent correct and hits minus false

Figure 5
Confidence-Accuracy Curves, With Error Bars Being Across-
Subject Standard Errors of the Mean

Note. These curves use a value for each participant only if that partici-
pant used that confidence value on $3 trials and include only points
where at least 25% of participants had values assigned. Confidence
closely tracks accuracy, and even at set size 6, the highest confidence tri-
als are quite accurate (89% overall for confidence level 6). However, as
uniquely predicted by signal detection models but not threshold models,
there are high confidence false alarms and high confidence misses, and
such trials are increasingly prevalent at high set sizes, where memory gets
weaker (0.67% at set size 1; 3.54% at set size 3; 12.1% at set size 6). See
the online article for the color version of this figure.

4 It has been shown across many situations that participants’ criteria tend
to be more stable across conditions than expected by a strict likelihood
ratio account (where a given confidence level always matches a precise
percent correct; e.g., Stretch & Wixted, 1998), and this is especially true
with interleaved trials, like the current experiment (Rahnev, 2021). Signal
detection models with this basic property all predict high confidence false
alarms and misses.

5 Threshold accounts have alternatively attempted to explain high-
confidence false alarms by assuming that they reflect implicit demand
characteristics to use the entire confidence scale; however, when tested
empirically, this assumption appears unsubstantiated (seen here, Figure 6,
and in Delay &Wixted, 2021).
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alarms—being mismatched with the empirical ROC. Then, in
Experiment 2, we provide a critical test of whether the curvilinear
ROCs we observe in Experiment 1 truly reflect latent memory sig-
nals, as opposed to arising artifactually in confidence-based ROCs.
First, what would happen if we took a binary change detection

task and participants could only respond “same” when their confi-
dence was at, or above, a certain criterion? For illustration, here we
assume that a participant’s reported confidence is a direct readout of
their memory states, which we can use to track different levels of
response criteria. Importantly, we do not make this assumption in
Experiment 2 (our core experiment) because it is not based on confi-
dence judgments. Using the empirical confidence data from Experi-
ment 1, we can see how performance, as measured by K or d0, would
change as the internal criterion were shifted in Figure 7. Notably, d0

remains constant as we measure criterion across possible confidence
values, whereas K incorrectly interprets different response criteria on
the exact same data as changes in true memory strength and thus
alters the working memory “capacity.” In other words, the Kmeasure
effectively conflates response bias with true memory strength. This
occurs in part because the ROC implied by d0 effectively matches
the actual ROCs observed in Experiment 1. Thus, calculating d0

using any possible confidence criterion as the cut-off for saying
“same” is the same as moving along the ROC predicted by the equal
variance signal detection model and, therefore, yields approximately
the same d0 for different levels of response bias. By contrast, because
the ROC implied by threshold models like K deviates from the shape
of the empirical confidence ROC, K values are much lower when cri-
terions are extremely high or extremely low compared with when
they are less extreme and somewhere in the middle (except at set size
1, where all models agree performance is essentially perfect). This is
because the high-threshold (linear) ROC approximates the empiri-
cally curvilinear ROC shape only in the center and not for extreme
criteria (see Figure 9).
Our simulation also makes clear that over a wide range of

performance values and biases, K and d 0 do not strongly diverge

which is one reason that it has historically been difficult to tell
them apart (see Figure 7). They do, however, diverge primarily
at high set sizes and for conservative response criteria (i.e.,
being reluctant to respond “same”). This divergence would not
be apparent unless such extreme response criteria extemporane-
ously occur in real data. Unfortunately, they seem to be quite
common. In fact, data from change detection tasks seem to lead
to extremely conservative responding in many situations. As an
example, we reanalyzed data from 3,849 people who completed
a change detection task (Balaban et al., 2019) and found that at
set size 4, 91% of participants had false alarm rates below .2,
and at set size 8, 68% of participants had a false alarm rate this
low. By contrast, only 56% of participants (at set size 4) and
12% of participants (at set size 8) had miss rates this low (see
Figure 8).

Because this is the exact situation where K values and curvilin-
ear ROCs most strongly diverge, if the ROCs implied by the confi-
dence reports reflect true latent memory strengths, this is also the
situation where K values would pick up largely on response criteria
differences rather than genuine differences in memory strength. Since
many studies use a similar task design, this raises the possibility that a
large fraction of visual working memory results that rely on K values
may be incorrect, overestimating the cost of higher set sizes relative
to low set sizes, and particularly underestimating the performance of
those participants with particularly conservative response criteria.
Even more troubling is the fact that in the Balaban et al. (2019) data,
a full 20% of participants at set size 4, and 10% of participants at set
size 8, had 0 false alarms in the entire condition. This technically
makes memory strength unknowable for these conditions and while
there are methods to correct for this problem, they each rely on
assumptions that may not always hold up (see Hautus, 1995).

How can we directly test whether the confidence-based ROCs
reflect the true distribution of latent memory strengths? Although
there are many possibilities, most depend on model fits that are often
opaque and that fundamentally depend on modeling assumptions

Figure 6
Confidence Values Given by Participants Are Spread More Widely as Set Size
Increases

Note. As in most change detection studies (see Simulation and Experiment 2), participants
have a response bias toward believing there was a change at high set sizes (e.g., being con-
servative in responding with confidence in “same”/“old”). See the online article for the
color version of this figure.
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(e.g., Rouder et al., 2008). Thus, in Experiment 2, we preregistered a
novel and critical test of whether K or d0 best describes true latent
memory strength distributions. Here, we use a simple manipulation
that takes advantage of the fact that participants tend to be very con-
servative at high set sizes (i.e., less likely to say “same”).

Experiment 2: A Straightforward, Confidence-Free
Test of the Nature of Memory Signals

Experiment 2 takes advantage of the fact that participants are
naturally conservative in responding “same” at high set sizes and
makes a critical prediction about how performance should change
when they are encouraged to say “same” more often. Consider a
participant (gray point in Figure 9) with very few false alarms.
Such participants are typical in high set size change detection
experiments (see Figure 8). In signal detection terms, they are
thought to have a strong response bias. In threshold model terms,
they are thought to nearly always say “different” when they are
“guessing.” If they could be encouraged to shift their criterion
(i.e., to say “same” more often), what would happen? Signal detec-
tion theory predicts a curvilinear change in performance, such that
saying “same” more often would proportionally add more hits
than false alarms, because it would involve shifting the criterion to
allow for saying “same” to still strong but overall slightly weaker
memory signals, and strong memory signals are more likely to be
generated by items that were truly seen than by items that were not
seen. The curvilinearity is implied by the line of constant d0 being
curvilinear (see Figure 9). Threshold models like K instead predict
that a shift in criterion (i.e., responding “same” more often) would
change only the responder’s guessing strategy; since participants
have no idea what the answer is on such trials (because they have
no information about the probed item); therefore, saying “same”
more often would simply add an equal proportion of hits and false
alarms to their responses (see Figure 9).

This produces a strong potential dissociation: If the equal var-
iance signal detection model provides a better account of the
underlying memory signals, encouraging more “same” responses

Figure 8
Nearly All Participants Have Low False Alarm Rates at Both Set
Size 4 and 8, Exacerbating the Difference Between d 0 and K as
Metrics of Performance

Note. Response criteria are particularly conservative at set size 8, where
“misses” are quite common (i.e., hit rates are low) but false alarms remain
extremely rare.

Figure 7
Metrics of Visual Working Memory Performance Plotted for the
Group Mean Data From Experiment 1, as a Function of
Response Criteria (Applied to the Confidence Data)

Note. Because the receiver operating characteristic (ROC) implied by d0
closely matches the actual ROCs observed in Experiment 1, calculating d0
using any possible confidence criteria as the cut-off for saying “same” gives
approximately the same d0. By contrast, because the ROC implied by threshold
models like K deviates from the shape of the confidence ROC, K values are
lower when the criteria are extremely high or extremely low compared with
the middle (except at set size 1, where all models agree performance is essen-
tially perfect). This is because the linear ROC predicted by K approximates the
true confidence-based ROC shape only in the center, and not for extreme crite-
ria (see Figure 2). See the online article for the color version of this figure.

Figure 9
An Exaggerated Potential Outcome of Shifting a Naturally
Conservative Participant (Gray) to Say “Same” More Often, in
Terms of the Prediction of Signal Detection (d0) and Threshold
View (K)

Note. The more conservative the initial responding pattern is, the more
the two models dissociate in their prediction. By computing participants’
performance in the baseline condition—the gray dot—in terms of K and
d 0, and comparing with to their performance (again in K and d 0) when
their decision criteria are shifted leftward, and thus their false alarm rates
move rightward, we can distinguish these models: An ideal metric would
find the same level of performance despite the shift, whereas a model that
suggested memory had changed would be dispreferred. See the online ar-
ticle for the color version of this figure.
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should result in the same d0, but considerably higher K values than
the normal task. This latter point can be inferred from our simula-
tion (see Figure 9); that is, if one were to fit the threshold model
(K) to the orange point in the plot, the predicted line (parallel to
the diagonal line of chance performance) would be well above the
line projected from the gray point. By contrast, if the threshold,
guessing-based view is correct, encouraging “same” responses
should move along the linear K line, and should produce a large
drop in d0. This point can also be inferred from Figure 9, because
if the equal variance signal detection model were fit to the red
point, the corresponding projection for this model would be much
lower than the original projection from the gray point.
To test this, in Experiment 2 we compare (a) performance in a

standard change detection task at set size 8, with no special
instructions and no requirement to report confidence with (b) per-
formance in a matched change detection task that involves an
instructional modification intended to discourage extremely con-
servative responding (adaptive instructions, where participants are
encouraged to respond “same” more often if they have fewer false
alarms than misses within a block of trials). Importantly, this
design seeks to counterintuitively improve K, rather than hurt K.
Although it is easy to imagine that unusual instructions could hurt
performance (e.g., by making the task more confusing or more dif-
ficult), there is no natural mechanism for threshold models to pre-
dict that such instructions could improve performance relative to
our baseline of a standard change detection task.

Method

The hypothesis, design, analysis plan, and exclusion criteria for
this study were preregistered: https://Aspredicted.org/Blind.php?x=
743fj8.

Participants

We preregistered a Bayesian analysis plan and a sequential sam-
pling design (following the recommendations of Schönbrodt et al.,
2017). In particular, we planned to initially run N = 50 nonex-
cluded participants for each of the two groups (Standard; Adapt-
ive), and then calculate a Bayes factor comparing K values across
the two groups. We planned to continue iterating in batches of 10
per group until our Bayes factor for the comparison of K was
greater than 10 or less than 1/10th (e.g., provided 10:1 evidence
for or against the null). However, we achieved this Bayes factor in
our first sample of N = 50 per group, so no sequential procedure
was used in practice and N = 50 per group was our final sample
size. The study was conducted online using participants from the
UC San Diego undergraduate pool. Our preregistered exclusion
criteria were to exclude any trials where reaction times were,200
ms or .5,000 ms and exclude and replace any participants who
had more than 10% of trials excluded, had a d0 , .5, or had K ,
1. This resulted in the exclusion of 41 participants. This is further
explained and analyzed below.

Stimuli

The same color circle as Experiment 1 was used to generate
stimuli, and the change detection task was similar to that of
Experiment 1, but with eight placeholder circles rather than six
and all trials at set size 8. Stimuli were shown for 1,000 ms with

an 800-ms delay. The shown colors and the foil were again
required to be$15 degrees apart on the color wheel.

Procedure

There were two between-subjects experimental conditions, Nor-
mal and Adaptive. Each group performed 450 trials of a set size
eight change detection task, with all changes being maximally dif-
ferent colors (180 degrees on the color wheel). The trials were bro-
ken into 15 blocks of 30 trials, and after each block participants
could take a short break. The entire task took about 45 minutes.

In the standard-instructions group, participants simply performed
this task in line with a completely standard change detection task.
Participants were not instructed to use any kind of response policy,
but simply told to respond “same” if they think no change occurred
and “different” if they think that a change did occur.

In contrast, in the adaptive-instructions condition, everything
was the same at the beginning of the experiment, with the standard
instructions. However, participants were given an additional set of
instructions after each block if they had more “misses” than “false
alarms” in that block (of 30 trials). These instructions encouraged
them to shift their criterion (e.g., respond “same” more often). In
particular, they saw these instructions:

You have been saying “different” more than “same,” even though the
trials are 50% same and 50% different. Focus on splitting your
responses more evenly to improve your performance! To do this, do not
try to just say “same” all the time: instead, try to respond “different”
only if you are very sure it was different; otherwise respond “same.”

Analysis

Based on the effect size in our pilot data, we estimated the effect
size at approximately a Cohen’s d of .5 and preregistered the scale
of the alternative hypothesis in the Bayes factor analysis with that
in mind. Thus, our Bayes factors were calculated with our prereg-
istered Scaled-Information Bayes Factor with r = .5.

Exclusions

Forty-one of 141 participants were excluded using our preregis-
tered criteria. These participants were excluded because we preregis-
tered a criteria of d0 , .5 or K , 1 being unsatisfactory, because
such subjects are nondiagnostic of the difference in the models (the
closer a participant is to chance, the less distinction there is between
a curvilinear and linear ROC). In our experience, finding this level of
poor performers is relatively typical of long online studies with diffi-
cult tasks, such as the one shown here with a set size 8 memory task.
However, a post hoc analysis of all participants, with no exclusions,
gives a similar pattern to our main analysis (a 16% gain in K from
Normal to Adaptive and a �5% difference in d0). Notably, however,
the addition of many nondiagnostic participants at near chance per-
formance level drags the effect size for the difference in K down far
enough (from dz = .64 in our preregistered sample to dz = .22 in the
full sample) to make the evidence nondefinitive. However, if we had
planned to analyze the data this way to begin with—without exclu-
sions of nondiagnostic participants—we would not have preregis-
tered such a large effect size for the alternative hypothesis in the
Bayes factor, nor stopped our iterated data collection plan with this
number of participants. Therefore, in our view the strength of
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evidence favoring d0 over K is not affected in any meaningful way
by the exclusions.

Results

Overall, we found that individuals can increase their “working
memory capacity” (as measured by K) simply by shifting their
response criteria. In particular, we found a substantial gain in K val-
ues for the adaptive-instruction conditions (median gain: 29.04%)
and almost no difference in d0 between groups (median gain: 1.01%;
Figure 10). A Bayes factor greater than 10 is considered strong and
greater than 20 is considered to be decisive evidence. The Bayes fac-
tor that the K value differed between the groups was favored by
greater than 20 (BF10 = 24.43) whereas the null hypothesis of no dif-
ference between groups was favored for d0 (BF10 = .55). The same
results were found when using standard frequentist statistics, with a
highly reliable difference in K, t(98) = 3.19, p = .002, d = .64, and no
difference in d’ between groups, t(98) = .96, p = .338, d = .19. We
note here that these differences in memory estimates are based on the
metrics of each measure obtained from direct transformations of the
data, with no model fitting. Accordingly, these metrics are not subject
to common criticisms regarding differential model flexibility or over-
fitting (unlike the results of e.g., Rouder et al., 2008; which appear to
arise from the particular assumptions used in the model fits: Robin-
son et al., 2022).
This provides strong evidence that d0, but not K, successfully

adjusts for response bias changes. It suggests that K systematically
underestimates performance when responses are very conservative,
as they generally are at high set sizes. It also provides a strong valida-
tion of the confidence-based ROC curves found in Experiment 1,
which seem to truly reflect the latent memory signals used to make
“same”/“different” judgments. Notably, this large change in K occurs
even though we did not manipulate response criteria in the “Normal”
group at all. Nonetheless, the on-average conservativeness of the cri-
teria used in standard change detection was sufficient to create this
strong dissociation between K and d0.

Overall, then, Experiment 2 shows that K conflates response bias
with memory, whereas d0 does not. This provides evidence both
against the threshold model underlying K, but also in favor of the
equal variance signal detection model (as opposed to more complex
signal detection-based models that allow for guesses or lapses).

Experiment 3: Excluding Contributions From
Limitless Memory Storage

Some previous work has claimed that—even with delays that
are longer than the commonly accepted limitations of iconic mem-
ory (e.g., 800 ms, in Experiment 2)—a residual perceptual trace
can contribute to performance thus adding to the computations and
limitations of working memory alone. In theory, this could cause
memory to look more continuous when it is actually discrete (e.g.,
Rouder et al., 2008). Thus, to test this hypothesis and to thor-
oughly explore the dichotomy between discrete and continuous
memories, in Experiment 3, we replicated Experiment 2 but fol-
lowed the methods of Rouder et al. (2008)—one of the few articles
claiming evidence for threshold-like performance (though see
Robinson et al., 2022)—in adding a visual mask before the change
detection test.

Here, our logic was otherwise the same as in Experiment 2: We
assessed the shape of the ROC curve underlying memory perform-
ance without the need for model comparisons or confidence. We
used instructions that should improve performance relative to the
baseline of a standard change detection task, if and only if a measure
implies the wrong ROC. Because the task was harder with the masks,
we used set size 6 instead of set size 8; which also allowed us to
assess the generality of our conclusions with regard to set size.

Method

The hypothesis, design, analysis plan and exclusion criteria for
this study were preregistered: https://aspredicted.org/DDL_5FP.

Figure 10
Results of Experiment 2

Note. (A) The group average for normal and adaptive conditions show that the adaptive
condition was effective in getting participants to respond “same” more often. The best fit d 0

and best fit K lines are shown for both conditions, though because as their d 0 was nearly
identical, the orange d 0 is obscured by the red one. (B) Violin plots of the distribution of K
and d 0 values for each participant in each condition. The median K value (black line)
“improved” by nearly 30% with the adaptive instructions, whereas the median d 0 was nearly
identical between conditions. See the online article for the color version of this figure.
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Participants

This study was conducted online using participants from the UC
San Diego undergraduate pool. We expected a smaller effect size in
comparing the conditions here since we expect that, at set size 6, par-
ticipants should have less extreme response criterion in the standard
condition, so K should underestimate their performance less-so than
when working memory is taxed with eight items. However, because
we were using a sequential sampling procedure, this expectation of
reduced effect size also affected our sample size planning, compared
with Experiment 2. In particular, we again preregistered a Bayesian
analysis plan and a sequential sampling design. We again planned to
initially run N = 50 nonexcluded participants for each of the two
groups (Standard; Adaptive), and then calculate a Bayes factor com-
paring K values across the two groups. As in Experiment 2, our Bayes
factors were calculated with our preregistered Scaled-Information
Bayes Factor with r = .5. We continued iterating in batches of 10 per
group until our Bayes factor for the comparison of K was greater than
10 or less than 1/10th (e.g., provided 10:1 evidence for or against the
null). In this case, we iterated until we had N = 80 participants per
group (total sample size of 160), where we achieved the required
Bayes factor. Our preregistered exclusion criteria were to exclude any
trials where reaction times were,200 ms or .5,000 ms and exclude
and replace any participants who had more than 10% of trials
excluded, had a d0 , .5, or had K , 1. This resulted in the exclusion
of 36 participants. This is further explained and analyzed below.

Stimuli

The change detection task was similar to that of Experiment 2,
but with six placeholder circles and all trials at set size 6. Stimuli
were shown for 1,000 ms with a 500-ms delay and then a 300-ms
visual mask (see Figure 11). The shown colors and the foil were
again required to be$15 degrees apart on the color wheel.

Procedure

There were two between-subjects experimental conditions,
Normal and Adaptive. Each group performed 450 trials of a set

size 6 change detection task, with all changes being maximally
different colors (180 degrees on the color wheel). The trials
were broken into 15 blocks of 30 trials, and after each block
participants could take a short break. The entire task took about
45 minutes.

In the standard-instructions group, participants simply per-
formed this task in line with a completely standard change detec-
tion task. Participants were not instructed to use any kind of
response strategy and were simply told to respond “same” if they
think no change occurred and “different” if they think that a
change did occur. In contrast, in the adaptive-instructions condi-
tion, everything was the same at the beginning of the experiment,
with the standard instructions. Here, at the end of a particular
block, participants were given an additional set of instructions if
they had more “misses” than “false alarms” in that block (30 tri-
als). These instructions encouraged them to shift their criterion
from conservative to neutral (e.g., respond “same” more often). In
particular, they saw these instructions:

You have been saying “different” more than “same,” even though the
trials are 50% same and 50% different. Focus on splitting your
responses more evenly to improve your performance! To do this, do
not try to just say “same” all the time: instead, try to respond “differ-
ent” only if you are very sure it was different; otherwise respond
“same.”

Exclusions

Thirty-six of 196 participants were excluded using our preregis-
tered criteria. These participants were excluded because we pre-
registered a criteria of d0 , .5 or K , 1 being unsatisfactory,
because such subjects are nondiagnostic of the difference in the
models (the closer a participant is to chance, the less distinction
there is between a curvilinear and linear ROC). Once again, a post
hoc analysis of all participants, with no exclusions, produces a
similar pattern to our main analysis (a 13.6% gain in K from Nor-
mal to Adaptive and a decrease of �5.8% in d0).

Figure 11
Task in Experiment 3

Note. Participants saw six colored circles, then after a brief delay a visual mask appeared
before the change detection test display appeared. Here, as in Experiment 2, participants
simply responded whether the probed item was the same or different; compared with the
item that was shown in that location (a “same” response would elicit a hit for the above
example). See the online article for the color version of this figure.
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Results

As in Experiment 2, we again found that individuals can
increase their “working memory capacity” (as measured by K)
simply by shifting their response criteria. In particular, we found a
substantial gain in K values for the adaptive-instruction conditions
(median gain: 14%) with no reliable difference in d0 (median
change: �4%; see Figure 12). A Bayes factor greater than 10 is
considered strong and greater than 20 is considered to be decisive
evidence. The Bayes factor that the K value differed between the
groups was favored by greater than 20 (BF10 = 27.83) whereas the
null hypothesis of no difference between groups was favored for
d0 (BF10 = .31). The same results were found when using standard
frequentist statistics, with a highly reliable difference in K,
t(158) = �3.16, p = .002, d = .50, and no difference in d0 between
groups, t(158) = �.30, p = .765, d = .05.
Although the results for the improvement in K were statistically

significant in the frequentist test—even with the original N = 50
groups, t(98) = �2.60, p = .011, d = .52—our sequential sampling
design led to much more decisive evidence as we increased the
samples to meet our preregistered Bayes criterion. At each sequen-
tial sampling step (N = 50, 60, and 70 per group), the Bayes factor
was 6.3, 7.9, and 9.9, respectively; which is considerably lower
than the strength of evidence that we found in our final sample
(N = 80; 27.83 to 1). The Bayes factors for d0 favored the null for
all four sample steps .37, .34, .32, and .31, respectively.
Overall, we replicated Experiment 2 and found that visual

masks do not obscure the continuous nature of visual working
memories. Once again, we found strong evidence that d 0, but
not K, successfully adjusts for response bias changes, and that
K systematically underestimates performance when responses
are very conservative, as they generally are at high set sizes.
Overall, then, Experiment 3 again shows that K conflates
response bias with memory, whereas d 0 does not. This again
provides evidence both against the threshold model underlying
K, but also in favor of the equal variance signal detection model

(as opposed to more complex signal detection–based models
that allow for guesses or lapses).

General Discussion

Across three experiments, we examined the nature of the latent
memory signals used in change detection tasks and the implica-
tions for proper measurement of performance in change detection.
We compared a theory that sees these signals as continuous in
strength—signal detection theory—with a threshold-based view,
where memory signals are all-or-none. In Experiment 1, we found
evidence from confidence reports that memory was continuous in
strength, with support for equal variance signal detection models,
suggesting not only that signal detection theory was a more accu-
rate measure of performance but also that there is no need for addi-
tional assumptions about guesses or lapses to be added to the
simplest instantiation of signal detection theory. We then tested a
critical implication of this result in Experiment 2: that, whereas d0

should remain constant, K values should systematically underesti-
mate performance in standard change detection experiments for
participants who rarely false alarm. We found strong evidence for
this hypothesis, with a Bayes factor of 24 to 1 in favor of the find-
ing that K is not fixed across simple instruction changes. This pro-
vides strong evidence against threshold-based measures like K
because, while it is possible to imagine that instructional changes
could hurt performance, there is no natural mechanism for thresh-
old models to predict that such instructions could increase mem-
ory capacity. Furthermore, d0 was nearly constant, which suggests
that the confidence-based ROCs observed in Experiment 1
straightforwardly underlie performance in Experiment 2, and that
a single decision axis that applies to all trials is sufficient to
explain performance without added assumptions about guesses or
lapses. We then replicated Experiment 2 at a different set size and
with a visual mask in Experiment 3 and again found strong evi-
dence that d0 is fixed across response criterion changes whereas K
is not. Thus, our findings suggest that visual working memories

Figure 12
Results of Experiment 3

Note. (A) The group average for normal and adaptive conditions show that the adaptive
condition was effective in getting participants to respond “same” more often. The best fit d 0

and best fit K lines are shown for both conditions, though because their d 0 was nearly iden-
tical, the orange d 0 is obscured by the red one. (B) Violin plots of the distribution of K and
d 0 values for each participant in each condition. The median K value (black line)
“improved” by nearly 30% with the adaptive instructions, whereas the median d 0 was nearly
identical between conditions. See the online article for the color version of this figure.
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are best thought of as continuous in strength and best analyzed in
terms of signal detection measures, and that there is no need for
added guess or lapse parameters to account for change detection
performance even at the highest set sizes (see also Brady et al.,
2021; Robinson et al., 2020; Schurgin et al., 2020).
In terms of proper measurement of performance, we find that K

values are not a good match to the actual shape of ROCs in change
detection since ROCs are curvilinear and are thus best character-
ized by d0, not K. Unfortunately, this means nearly all conclusions
based on K values are potentially suspect, because they do not
properly discount differences in response criteria and thus measure
a combination of response criteria and memory performance. Fur-
thermore, Experiment 2 shows this effect is not subtle: Comparing
a completely typical response criteria to one that is more symmet-
ric (with respect to misses and false alarms) results in an underesti-
mate of performance when using K by 30%. Conditions that
induce even more conservative responding, or that include individ-
ual subjects with more conservative criteria, will be even more
influenced by the failure of K to correctly adjust performance for
response criteria.
How much of K is a measure of response bias rather than a

memory measure under typical conditions? A multiple regression,
comparing K values computed in all subjects in Experiments 2 and
3’s normal, nonadaptive condition, with the true measure of mem-
ory strength that matches the ROC (d0) and with response criterion
(c), suggests that K values are about 1/3rd measures of response
bias and two-thirds measures of memory strength (after centering
and scaling, a participant’s K is best predicted by a .77 wt on d0

and a �.45 wt on c, both p , .001). Thus, under standard change
detection conditions, a participant’s K is extremely strongly influ-
enced by that participant’s response bias, and K is nearly as much
a measure of response bias as it is a measure of memory
performance.
Throughout the article, we focus on K values because they have

been, and continue to be, extremely common in visual working
memory experiments (see Alvarez & Cavanagh, 2004, 2008;
Brady & Alvarez, 2015; Endress & Potter, 2014; Forsberg et al.,
2020; Fukuda & Vogel, 2019; Irwin, 2014; Luria & Vogel, 2011;
Ngiam et al., 2019; Norris et al., 2019; Pailian et al., 2020; Schur-
gin & Brady, 2019; Shipstead et al., 2014; Sligte et al., 2008; Uns-
worth et al., 2014; Vogel & Machizawa, 2004; Woodman &
Vogel, 2008). However, percent correct and corrected hit rate (i.e.,
hits minus false alarms) also predict linear ROC curves (e.g.,
Swets, 1986) and thus are also invalid measures of memory per-
formance according to our data. Another popular metric of per-
formance in related tasks is A’ (e.g., Fisher & Sloutsky, 2005;
Hudon et al., 2009; Lind & Bowler, 2009; MacLin & MacLin,
2004; Poon & Fozard, 1980; Potter et al., 2002), and although this
measure is claimed to be “atheoretical” and nonparametric by its
proponents (Hudon et al., 2009; Pollack & Norman, 1964; Snod-
grass & Corwin, 1988), in truth there exists no measure of memory
derived from a single hit and false alarm rate that is atheoretical and
nonparametric (Macmillan & Creelman,1996). Unlike K, A’ predicts
ROC curves that are curvilinear, though differently curvilinear than d0

(Stanislaw & Todorov, 1999), and so may be less likely to confound
response bias and memory strength than K. Unlike d0, however, which
is based on theoretically plausible assumptions (latent memory signals
for old and new items are distributed as equal-variance Gaussian dis-
tributions with different means), A’ embraces theoretical assumptions

that are implausible when made explicit (e.g., Macmillan & Creel-
man, 1996; Pastore et al., 2003; Wixted, 2020).

Overall, our results suggest d0 should be the preferred measure-
ment metric for change detection data, as d0 was constant across
changes in response bias (Experiments 2 and 3) and matched the
shape of the ROC (in Experiment 1). This provided evidence not
only in favor of signal detection models but also in favor of the
simplest kind of single-process signal detection model, without
any additional need for lapses or guesses.

However, even though the current studies find evidence for
equal variance signal detection models, and thus d0, it may not be
the case that an equal variance signal detection model is always
appropriate (see also Robinson et al., 2020). It may be that our
experiments are ideal for finding equal variance because memory
resources tend to be split relatively evenly between items in this
task: we ask participants to split attention equally between all
items by making them equally likely to be tested; by using simple
stimuli that are all approximately equally attention-grabbing and
thus likely to be encoded and maintained with roughly equal
resources; and by presenting these stimuli only briefly. The use of
d0 may not be valid in other conditions, like sequential encoding
(Brady & Störmer, 2022; Smith et al., 2016; Robinson et al.,
2020) or when items are differentially prioritized (Emrich et al.,
2017). Thus, in general, two-alternative forced-choice, rather than
change detection, is likely a better “default” method for a range of
working memory tasks (see Brady et al., 2021).

Another possibility is that continuity in memory strength is
related to the stimulus space; that, by using categorical stimuli,
instead of continuous spaces (like we’ve done here with color),
one might find evidence for discreteness in memory. However,
recent work which has used discrete, categorical stimuli in visual
working memory has also found curvilinearity in the ROC and
rejected discrete models as adequately explaining the data (e.g.,
Robinson et al., 2020, used eight discrete colors). In general, the
notion of discrete or categorical stimuli and discrete or all-or-none
memory strength are different notions of discreteness: even for
discrete stimuli, like words, memory strength is usually thought to
be continuous (e.g., Mickes et al., 2007).

Although we have found strong evidence in favor of curvilinear
ROC curves here, previous work that investigated ROC curves in
change detection has found mixed results. Confidence-based ROC
curves have reliably been found to be curvilinear and approxi-
mately in line with equal variance signal detection models (e.g., in
Robinson et al., 2020, and visually in Xie & Zhang, 2017)6; how-
ever, results from response bias manipulations across a small
range of values have provided data that were initially taken to sup-
port threshold views (Rouder et al., 2008). Interestingly, when fol-
lowed up on, other results have provided more mixed results, with
less certain support for threshold models of memory (Donkin
et al., 2014, 2016). Our own reanalysis of the data from these stud-
ies suggest that when model comparisons are properly calibrated
to ensure accurate model recovery from simulated data, they all
provide support for signal-detection views and are largely in
agreement with confidence ROCs (Robinson et al., 2022). Experi-
ments 2 and 3 are unique in taking an approach that is independent

6 Note that these authors do not attempt to fit an equal variance signal
detection model, but their ROC is visually consistent with such a model.
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of any model comparisons to ask whether changes in response
bias are naturally accounted for by threshold and/or signal detec-
tion views. The results from this experiment provided strong sup-
port for the curvilinear nature of ROCs and thus for d0 as the
standard metric of visual working memory performance when
using change detection tasks.
Above and beyond the question of whether K measures (Cowan,

2001; Pashler, 1988; Rouder et al., 2011) are valid, it is important to
ask whether curvilinear ROCs—as we observe in both confidence and
response bias manipulations—sufficient to reject high-threshold views
altogether? There is substantial convergent evidence to suggest that
they are. When considering confidence-based ROCs at a single level
of performance at a time, it is possible to construct high-threshold
models of curvilinear ROCs. For example, Province and Rouder
(2012) propose that even when participants are, in truth, completely
certain of their response, they may nevertheless give a low confidence
response because the experimenter, by presenting a confidence scale,
is making “an implicit demand to distribute responses” across the pro-
vided scale. However, in the context of mixed set size trials like the
current Experiment 1, this account cannot predict the data we have
observed here. This is because participants do not, in fact, spread their
responses at all at set size 1, and instead do so only at the highest set
sizes.
Even more compelling, however, is that if memories were truly

high-threshold and it is only confidence reports that are noisy and
lead to biased estimates of memory, this account predicts that in
Experiment 2—where there is no confidence elicited—K, and not
d0, would be fixed across our response criteria manipulation.
Instead, we again found strong evidence for d0, not K as the mea-
sure which appropriately accounts for response bias. Altogether,
our results are deeply incompatible with threshold-based views in
several ways. They are not only consistent with explanations based
on signal detection models but are directly in line with a priori pre-
dictions from such models (as evidenced by our preregistration).
For example, our results align with recent work by Winiger et al.
(2021), who used a novel critical test with minimal assumptions to
test between discrete-slot and signal detection models in a change
detection paradigm. Like us, these researchers found evidence for
pure resource models of visual-working memory using a test that
eschews the limitations of fitting models to empirical ROCs. Our
work adds to and extends these findings by directly underscoring
the profound practical limitations, as well as the detrimental con-
sequences for theory building that arise when researchers use K to
quantify the capacity of visual working memory.
In this context, we also highlight a major misconception in the

working memory literature, which is that discrete-slot models are
equivalent to or can be used as “proxies” for mixture models of
working memory. The fact that pure discrete-slot models are im-
plicitly endorsed in change detection paradigms through the use of
K metrics, likely reflects a heuristic assumption that these metrics
are “good enough” approximations of mixture models. Impor-
tantly, however, this assumption is misguided, because one cannot
choose which fundamental aspects of a model to embrace, and
ultimately leads to a situation where response bias is heavily con-
flated with memory performance, as we have shown here.
Although both threshold and mixture models are consistent with
item-limits in working memory, threshold models and mixture
models that postulate variations in precision differ fundamentally;
they predict different ROC curves and they predict different

distributions of errors in delayed estimation tasks (Xie & Zhang,
2017). Indeed, the observation that precision varies monotonically
with set size is why threshold-based discrete-slot models were
ruled out over a decade ago in delayed estimation tasks in favor
of, at minimum, mixture models that treat memory as variable in
strength up to a certain number of items (e.g., Pratte et al., 2017;
Zhang & Luck, 2008), or more recently most successful models
have been completely continuous models without additional
assumptions about complete failures (e.g., Schurgin et al., 2020;
van den Berg et al., 2012).

We suspect that most working memory researchers would
endorse the view that working memory representations do not
vary in precision. Nevertheless, that is precisely the view they im-
plicitly endorse by using K, and this is one fundamental point of
our article: Measures of unobservable cognitive processes are con-
strained by theory, and researchers must carefully consider the the-
oretical assumptions on which their metrics are based before using
them (for in-depth discussion of this issue see: Falmagne & Doble,
2016; Falmagne & Narens, 1983; Irvine, 2021; Kellen et al., 2021;
Narens, 2002, 2007; Roberts, 1985; Roberts & Rosenbaum, 1986;
van Frassen, 2008). We believe a failure to do so will only perpet-
uate invalid measurement practices in the psychological and cog-
nitive sciences, and perpetuate the “replication crisis” in
psychology (for similar points in recent articles see, e.g., Brady
et al., 2021; Kellen et al., 2021; Regenwetter & Robinson, 2017;
Rotello et al., 2015; Schimmack, 2021).

In effect, our work highlights that a choice between these models
and metrics is not simply a fickle theoretical concern; instead, the
finding that K fails to dissociate variations in memory strength from
variations in response bias, whereas d0 does not, entails that a choice
between these models can qualitatively change the inferences
researchers draw regarding how memory strength varies as a func-
tion of individual differences or experimental manipulations. Over-
all, this suggests that, as in long-term recognition memory, visual
working memory researchers should consider memories as continu-
ous in strength and use signal detection to measure performance.

There are potentially broad implications for the fact that K val-
ues confound response bias with memory performance, as K val-
ues underlie many critical conclusions about visual working
memory (Alvarez & Cavanagh, 2004, 2008; Brady & Alvarez,
2015; Chunharas et al., 2019; Endress & Potter, 2014; Eriksson
et al., 2015; Forsberg et al., 2020; Fukuda & Vogel, 2019; Fukuda
et al., 2010; Fukuda, Kang, & Woodman, 2016; Fukuda, Wood-
man, & Vogel, 2016; Hakim et al., 2019; Irwin, 2014; Luria &
Vogel, 2011; Ngiam et al., 2019; Norris et al., 2019; Pailian et al.,
2020; Schurgin & Brady, 2019; Shipstead et al., 2014; Sligte
et al., 2008; Unsworth et al., 2014; Unsworth et al., 2015; Vogel
& Machizawa, 2004; Woodman & Vogel, 2008). For example,
one major research domain for which our results could have pro-
found implications is the study of how visual working memory
capacity relates to global indices of cognitive function (Luck &
Vogel, 1997; Vogel & Awh, 2008). As a case in point, much of
the foundational work that examines the relationship between vis-
ual working memory limits and general intelligence has used K in
change detection paradigms to quantify visual working memory
limits (e.g., Fukuda et al., 2010). Such studies tend to use high
memory loads with the goal of placing sufficiently high memory
demands to detect individual differences in visual working mem-
ory capacity. Our simulations and empirical results reveal that
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these types of memory demands are precisely the kind that can
lead to changes in response bias, and that variations in K estimates
lead to spurious conclusions as to the source of these purported
correlations with intelligence. Given that much prior works sug-
gests that there are substantial individual differences in response
bias (Aminoff et al., 2012; Kantner & Lindsay, 2012; Miller &
Kantner, 2020), it follows that a substantial part of the shared var-
iance between intelligence and VWM capacity in such studies
could instead reflect an association between intelligence and
response bias. An analogous criticism has been repeatedly made in
the study of the relationship between intelligence and cognitive
control, where it remains unclear whether associations between
intelligence and performance on cognitive control (e.g., Eriksen
Flanker tasks) reveal shared variance between executive function
and intelligence, or shared variance between individual differences
in third variables, such as response policies (e.g., speed/accuracy
tradeoffs in cognitive control tasks) and intelligence (e.g., Bur-
goyne & Engle, 2020; Frischkorn & Schubert, 2018). We are not
attempting to promote the view that all of the shared variance
between intelligence and visual working memory capacity is due
to response bias. Instead, we view this as an open empirical ques-
tion that needs to be examined further with alternative measures of
visual working memory capacity. More broadly, we emphasize
that much of the work on individual differences and VWM
capacity should be reevaluated with a much heavier focus on
proper measurement.
Overall, we show that in change detection, K values substan-

tially confound response bias with memory performance and
should not be used. Instead, d0 should be the preferred metric of
change detection performance. More broadly, this work shows
how using the proper metric to understand memory performance is
critical, since incorrect metrics can give extremely misleading con-
clusions (e.g., underestimating performance by �30%), with
potentially broad implications for the literature. Furthermore, our
work suggests that an equal variance signal detection model—with
no additional guess or lapse processes—is sufficient to explain
change detection performance at high set sizes.
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