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a b s t r a c t

Combining evolutionary models with behavioral experiments can generate powerful insights into the

evolution of human behavior. The emergence of online labor markets such as Amazon Mechanical Turk

(AMT) allows theorists to conduct behavioral experiments very quickly and cheaply. The process occurs

entirely over the computer, and the experience is quite similar to performing a set of computer

simulations. Thus AMT opens the world of experimentation to evolutionary theorists. In this paper,

I review previous work combining theory and experiments, and I introduce online labor markets as a

tool for behavioral experimentation. I review numerous replication studies indicating that AMT data is

reliable. I also present two new experiments on the reliability of self-reported demographics. In the

first, I use IP address logging to verify AMT subjects’ self-reported country of residence, and find that

97% of responses are accurate. In the second, I compare the consistency of a range of demographic

variables reported by the same subjects across two different studies, and find between 81% and 98%

agreement, depending on the variable. Finally, I discuss limitations of AMT and point out potential

pitfalls. I hope this paper will encourage evolutionary modelers to enter the world of experimentation,

and help to strengthen the bond between theoretical and empirical analyses of the evolution of human

behavior.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Evolutionary game theory uses mathematics to formalize the
process of evolution (Hofbauer and Sigmund, 1998; Nowak,
2006b). One area which has received a great deal of attention is
the evolution of cooperation (Nowak, 2006a), with a particular
emphasis on human cooperation. How can we explain the fact
that people are often willing to help others, even at a cost to
themselves? Answering this question is of great interest and
importance for scientists across a wide range of disciplines.
Evolutionary game theory has provided many deep insights in
this area by combining biological and economic approaches.

When exploring the evolution of human cooperation, there are
several possible levels of analysis. One extreme involves produ-
cing analytical solutions for a given model, providing deep under-
standing of the model’s behavior and its dependence on
parameter values. In order to generate analytical solutions, how-
ever, typically models must either be very simple or extreme
ll rights reserved.

ary Dynamics, Harvard Uni-
limiting assumptions must be imposed. A second level of analysis
involves computer simulations. Here models can be of arbitrary
complexity and limiting assumptions may be relaxed, but there is
a trade-off: the results are not general, and instead apply only to
the particular parameter values simulated.

While the interplay between mathematical and computational
models has been the focus of much of evolutionary game theory, a
third level of analysis has recently been gaining in popularity:
human behavioral experiments. Similarly to the way in which
computer simulations add a layer of complexity to analytically
tractable models, behavioral experiments add the element of
human psychology. Using behavioral experiments built around
economic games, researchers can have human subjects interact in
precisely the same way agents interact in the theoretical models.
By comparing the predictions of evolutionary models with
observed behavior in the laboratory, we can gain insight into
human evolution.

Yet few evolutionary game theorists conduct behavioral experi-
ments. This fact is not particularly surprising: conducting experi-
ments requires a very different set of resources and skills from those
required for theoretical studies. To run behavioral experiments,
researchers need access to a laboratory (usually with a large number
of networked computers) in which to run the experiments, an active
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and well maintained subject pool from which to recruit participants
and a large research budget from which to pay them, as well as the
wherewithal to physically interact with participants, read instruc-
tions aloud, pass out instructions, count out and distribute cash
payments, etc. These practical barriers to entrance have largely
prevented theoreticians from crossing into the world of behavioral
experiments, and have discouraged many of those with a theoretical
background from developing experimental designs to testably
differentiate between model predictions.

With the advent of online labor markets, however, many of
these barriers have been dramatically reduced. Online labor
markets use the internet to connect employers with potential
workers, perform some vetting of worker credentials and facil-
itate easy transfers of payments (Horton et al., in press). One of
most popular online labor markets as of 2011 is Amazon Mechan-
ical Turk (AMT), where most jobs are short (less than five
minutes) and pay small amounts of money (less than $1).
Researchers can easily use AMT to recruit subjects for incenti-
vized behavioral experiments using economic games, where
earnings depend on the subjects’ decisions in the game. The
entire process occurs over the computer, making the experience a
familiar one for theorists—conducting experiments over AMT
feels very similar to running computer simulations. Thus online
labor markets open the world of experimentation to theorists.

In Section 2, I discuss the interaction between theory and
experiments to date in the context of human cooperation.
In Section 3, I introduce online labor markets and describe how
they can be used to conduct such cooperation experiments.
In Section 4, I provide an overview of evidence that data from
online labor markets is comparable to data collected in the
physical laboratory, and present two new experiments exploring
the accuracy and consistency of self-reported demographic data
from Amazon’s Mechanical Turk. In Section 5, and give practical
advice for running experiments using the internet. In Section 6, I
conclude.
2. Theory, experiments and human cooperation

Evolutionary game theoretic models give insight into what
behaviors can be favored by natural selection. Behavioral experi-
ments explore how people actually behave. The integration of
models and experiments goes in both directions, with models
motivating particular experimental designs, and data from
experiments being used to refine theories and inspire novel
models.

In some cases, general insights from evolutionary modeling
influence the design and interpretation of experiments. For
example, a great deal of theoretical work has emphasized the
importance of reputation (Kandori, 1992; Kreps and Wilson,
1982; Nowak and Sigmund, 2005; Ohtsuki and Iwasa, 2006)
and repetition (Axelrod, 1984; Axelrod and Hamilton, 1981;
Fudenberg and Maskin, 1986; Fudenberg and Maskin, 1990;
Nowak and Sigmund, 1993; Nowak and Sigmund, 1992) in the
evolution of human cooperation. Yet most experiments on coop-
eration (usually performed by economists) have focused on one-
shot anonymous games (see Camerer, (2003) for an overview).
A number of more recent studies have been undertaken re-
evaluating the conclusions from one-shot experiments in light
of the salience of reputation and repetition. These studies have
revealed that often conclusions from one-shot games either (i) do
not hold in games where there are future consequences for your
actions today, for example involving the effectiveness of punish-
ments and rewards for promoting cooperation (Dreber et al.,
2008; Milinski et al., 2002; Nikiforakis, 2008; Rand et al., 2009b;
Rockenbach and Milinski, 2006) (see Appendix A for a detailed
discussion of this issue), or (ii) are better interpreted in the
context of reciprocity and reputation, for example subjects’
extreme sensitivity to subtle cues suggesting that they are being
watched (Burnham and Hare, 2007; Burnham, 2003; Haley and
Fessler, 2005).

Models can also motivate specific experimental designs to test
theoretical predictions. Theoretical work on direct reciprocity
(Axelrod, 1984; Axelrod and Hamilton, 1981; Fudenberg and
Maskin, 1986; Fudenberg and Maskin, 1990; Nowak and
Sigmund, 1993; Nowak and Sigmund, 1992) led to a number of
experiments showing the power of (stochastic) repetition for
promoting cooperation and exploring the specific strategies used
in repeated games (Dal Bó, 2005; Dal Bó and Fréchette, 2011;
Fudenberg et al., in press; Wedekind and Milinski, 1996). Indirect
reciprocity models inspired experiments showing how reputation
can promote cooperation and exploring the social norms used by
human subjects (Milinski et al., 2002; Milinski et al., 2001; Seinen
and Schram, 2006; Semmann et al., 2005; Ule et al., 2009;
Wedekind and Milinski, 2000). Models exploring cooperation in
optional public goods games (Hauert et al., 2002) motivated
experiments demonstrating the cyclic dominance predicted the-
oretically (Semmann et al., 2003). The connection between
evolutionary models and experiments can be quantitative as well
as qualitative: stochastic evolutionary game theory models can
sometimes quantitatively reproduce the human behavior observed
in experiments where classical game theoretic approaches cannot
(Rand et al., 2009a).

Experiments do not always confirm the predictions of theore-
tical models. In such cases, which are often the most valuable for
theorists, experiments can inspire new modeling directions. For
instance, recent experiments have raised questions about the
ability of spatial structure to promote cooperation in the labora-
tory (Grujić et al., 2010; Suri and Watts, 2010; Traulsen et al.,
2010). Given that evolutionary analysis typically involves steady-
state/equilibrium behavior, one might wonder whether the mis-
match between these (or any other) experimental and theoretical
results is caused by the experiments not having been run for a
sufficiently long time. One way to gain insight into this issue is to
examine trends over time: if behavior in the experiments has
stabilized, as is the case in these experiments on spatial structure,
it seems unlikely that running the experiments for longer would
change the outcomes. Instead, it has been suggested that this
discrepancy is caused by the fact that learning and strategy
updating within an experimental session may be characterized
by extremely high rates of experimentation, which undermine the
effects of spatial structure (Traulsen et al., 2010). These results
have emphasized the importance of considering evolutionary
dynamics with high mutation rates (i.e. ‘exploration dynamics’)
(Traulsen et al., 2009), as well as devising experimental methods
for distinguishing between simple strategies ‘mutating’ and more
complex strategies that are probabilistic and/or conditional.

Another example is given by a collection of recent experiments
that have raised questions about the role of costly punishment in
promoting cooperation. While a large body of literature in
evolutionary game theory has explored the co-evolution of
punishment and cooperation, almost all of these models have
assumed that only cooperators might punish defectors. ‘Anti-
social punishment’ targeted at cooperators has been excluded a

priori. Yet experiments show that defectors may retaliate when
punished in repeated games (Cinyabuguma et al., 2006; Denant-
Boemont et al., 2007; Dreber et al., 2008; Nikiforakis, 2008; Wu
et al., 2009), that defectors may punish cooperators even in the
absence of the possibility for retaliation (either in one-shot games
or games where identities are shuffled between rounds) (Gächter
and Herrmann, 2009; Gächter and Herrmann, in press; Herrmann
et al., 2008) and that people will even pay to punish each other in
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the absence of any motivations whatsoever (for example, in the
so-called ‘joy of destruction’ game) (Abbink and Sadrieh, 2009;
Abbink and Herrmann, 2011). In response, new models have been
introduced re-examining the ability of punishment to promote
cooperation when the strategy is not arbitrarily reduced to exclude
anti-social punishment (Janssen and Bushman, 2008; Rand et al.,
2009a; Rand et al., 2010). Developing a more well-rounded under-
standing of punishment that includes spite, revenge and dominance
as well as the more ‘traditional’ focus of norm enforcement is an
important direction for subsequent modeling work.

Experiments may also suggest entirely new paradigms not
previously considered by evolutionary theorists. An example is
given by fascinating experiments that have explored endogenous
choice, where participants pick one of several games to play
(Gurerk et al., 2006; Rockenbach and Milinski, 2006; Sutter et al.,
2010). For example, a public goods game with or without
sanctioning opportunities: here sanctions have a dual purpose.
Because of the endogenous choice, they serve to sort subjects by
type as well as creating incentives. A first step in the direction of
studying evolution in this type of scenario is represented by a
recent model of pool punishment (Sigmund et al., 2010), a form of
institutional punishment introduced early in the experimental
study of punishment (Yamagishi, 1986). Further models, where
participants in each institution are insulated from one another
(as in the endogenous choice experiments), are a promising
direction for future research.

Because of this interplay between theoretical and empirical
investigations of human behavior, there is great value in having
theorists also conduct experiments. In the next section, I intro-
duce online labor markets and explain how they can facilitate this
cross-over between theory and experimentation.

Before proceeding, however, it is important to point out that
when integrating evolutionary models and human behavioral
experiments, one must be mindful of the complex range of
strategies employed by humans. Most models from evolutionary
biology tend to consider unconditional agents who either always
cooperate or always defect, and who then update their choice
through an evolutionary process. While these extremely simple
strategies may be reasonable descriptions of the behavior of some
non-human animals, human cognition almost certainly involves
more complex strategies. For reviews of animal versus human
cognition in the context of cooperation, see Brosnan et al.
(2010), Melis and Semmann (2010). In games with repetition or
reputation, these more complicated strategies explicitly condition
their behavior on previous events (Dal Bó and Fréchette, 2011;
Fudenberg et al., in press; Wedekind and Milinski, 1996;
Wedekind and Milinski, 2000). But even in one-shot anonymous
games, human agents might employ conditional strategies that
depend on their expectations and beliefs about how others will
act. An often discussed example from the experimental econom-
ics literature is the idea of people being ‘conditional cooperators’
in one-shot settings, such that they will cooperate as long as they
expect the other player(s) to also cooperate (Fischbacher et al.,
2001). Such players could be considered ‘altruistic,’ but none-
theless might wind up defecting much of the time depending on
their beliefs. Similarly, selfish individuals might behave proso-
cially depending on their beliefs about others: for example, ‘fair’
offers in the Ultimatum Game can largely (or perhaps entirely) be
explained by the belief that lower offers will be rejected (Roth
et al., 1991). Thus examining behavior is often not enough to
characterize people’s actual altruistic versus selfish preferences
and tendencies.

There are several approaches employed by social scientists to
address this issue. One method is to explicitly assess beliefs as
well as behaviors in the experimental design. Here, subjects are
asked what they expect others to do, as well as making one or
more behavioral decisions. These decisions can then be inter-
preted in the context of the associated beliefs. Eliciting beliefs is
potentially challenging, as subjects may not give truthful reports.
A solution is to add additional incentives, such that subjects are
paid extra if their reported beliefs are correct (Blanco et al., 2010;
Croson, 2000; Gächter and Renner, 2010; Prelec, 2004).

Another approach is to remove the role of beliefs by allowing
subjects to condition their behavior on the behavior of others
(Fischbacher et al., 2001), typically using the ‘strategy method.’
Here subjects indicate their behavior in each of a number of
possible situations, and are paid based on the decision indicated
for the situation that actually occurs. For example, conditional
cooperation can be assessed using an alternating Prisoner’s
Dilemma where subjects indicate their decision (C or D) if
(i) they are the first mover, (ii) they are the second mover and
the first mover chooses C and (iii) they are the second mover and
the first mover chooses D. All subjects are then randomly assigned
a role, and second mover decisions are determined based on the
behavior of the respective first mover. Without such a design, one
cannot tell whether a first mover’s C is motivated by altruism or a
self-interest coupled with the belief that C will elicit reciprocal
cooperation from the second mover; or whether a first mover’s D
is motivated by self-interest or the belief that the second mover
will not reciprocate.

A third possibility is to compare behavior across multiple
games (Dreber et al., 2011; Harbaugh and Krause, 2000). For
example, to determine the extent to which behavior in a given
setting is motivated by altruistic concerns, one might have
subjects play the game of interest followed by a Dictator Game
(Player 1 chooses how to split a sum of money between herself
and an anonymous recipient). In the Dictator Game, giving
nothing is payoff maximizing regardless of one’s beliefs about
the recipient; thus giving away any money is clearly indicative of
some other-regarding preferences. If behavior in the game of
interest is correlated with giving in the Dictator Game, that
suggests an altruistic motivation.
3. Online labor markets

To conduct experiments using economic games, researchers
must be able to recruit a sufficiently large number of subjects; to
provide them with instructions, make sure they understand the
rules of play and then collect their decisions (usually using a large
number of networked computers); and to pay them according to
their earnings in the study. Accomplishing this in the physical
world can be quite arduous, time-consuming and expensive.
Many schools have numerous full-time staff members whose sole
responsibility is managing the logistics necessary for running
behavioral experiments; and many researchers spend a large
portion of their time applying for grants to fund behavioral
experiments.

Thanks to the internet, it is now possible for theorists to satisfy
all of these requirements and conduct experiments as easily as
running a computer simulation. In recent years, a number of
online labor markets have arisen. These labor markets use the
internet to connect employers with potential workers, who are
paid to complete tasks on the computer. As in traditional labor
markets, payment is conditional on satisfactory completion of the
job, and workers often receive bonus pay based on how well they
complete the task. The labor market typically handles all payment
details—employers make a lump-sum transfer of money into an
account, and then indicate how much each worker should receive.
The labor market website takes care of the rest.

Thus online labor markets are ideal for conducting incenti-
vized behavioral experiments. Researchers act as employers,
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hiring workers to participate in experiments. The baseline pay-
ment corresponds to the ‘show-up fee’ typically paid to subjects
just for coming to the experiment, and then workers earn
additional bonus payments based on their actual decisions in
the game (and the decisions of the others they interact with).
There are few logistical issues for the experimenter to be
concerned with. Furthermore, much lower payments can induce
online workers to participate compared to subjects in the tradi-
tional lab, because the time investment costs are much lower
(no need to physically come to the lab space, spend time and
money on transit, etc.). An additional benefit of online experi-
ments is that by logging subjects’ IP addresses, one can get
accurate information about certain interesting demographic fac-
tors that subjects themselves might not even be aware of, such as
housing density, crime rates and rainfall in the area where each
subject is located.

As the entire process takes place over the computer, running
experiments using online labor markets is an easy transition for
theorists to make. The experience is quite similar to running a
computer simulation on a supercomputing cluster: the researcher
designs the experimental instructions (analogous to planning out
the program), creates a survey website or web applet through
which participants read instructions and indicate their decisions
(analogous to writing the code) and uploads the experiment to
the labor market as a job posting (analogous to submitting a run
to the cluster). The experiment is then automatically advertised
to (typically) thousands of workers, and as workers complete
the experiment, data accumulates and is downloaded by the
researcher. Once the experiment is over, the researcher calculates
each participant’s earnings, and uploads the payment information
to the labor market.

The most straightforward experimental designs to implement
in this way are those that do not require feedback. With such
designs, researchers can collect the decisions of all subjects, and
then once the experiment is over, match subjects up to determine
payoffs (‘‘ex-post matching’’). Thus subjects who interact and
affect each other’s payoffs need not be present at precisely the
same time, and no sophisticated software for simultaneous
interaction is needed. For example, in one-shot symmetric games
such as the Prisoner’s Dilemma, each subject makes their decision
(cooperation or defect). Then once all data is collected, subjects
are randomly paired, and payoffs are calculated based on what
each subject indicated. For more complicated games, the ‘strategy
method’ can be used, in which subjects indicate how they would
act at each node in a decision tree. These designs take advantage
of the fact that in many online labor markets, the employer has a
grace period of at least several days from the completion of the
job before bonuses must be paid. This gives time to implement
the ex-post matching.

As of 2011, the most active online labor market for conducting
behavioral experiments is Amazon Mechanical Turk (AMT). On
AMT, workers are usually paid small amounts for short tasks
(generally less than $1 for less than 5 minutes of work). AMT
workers are from all over the world, with the majority of workers
being from either the United States or India. Spending less than $1
per person is it possible to collect data from over 1000 subjects in
only one or two days using AMT. For a discussion of the details of
running studies on AMT, see Mason and Suri (2010).
4. Replications using mechanical turk

When using the internet to conduct experiments, researchers
have much less control over their subjects than in the physical
lab. Participants might not be paying close attention; multiple
people might be making a single set of decisions together;
participants can easily leave in the middle of the experiment for
whatever reason; participants may answer self-report questions
untruthfully; and a single subject might have multiple online
identities and thus be able to participate multiple times in a
single experiments (although note that online labor markets go to
lengths to prevent multiple IDs). One might also be concerned
that the subjects recruited through AMT differ dramatically from
those recruited in the physical laboratory. Proponents of AMT
maintain that the ability to quickly recruit much larger numbers
of subjects can compensate for the noise induced by these factors.
But before AMT can be used with confidence as an experimental
platform, it must be shown that this is true and that these
potential issues do not compromise data gathered on AMT. In
this section, I survey an initial series of replication studies
showing that data from AMT is consistent with data from the
physical lab. I also present two new studies exploring the
accuracy of self-reported data from AMT. The accumulation of
even more replications and validation experiments will play an
important role in establishing online experiments as an important
part of the empirical toolkit.

Most compelling are direct replication studies in which the
exact same experiment is run both in the physical lab and on
AMT. Horton et al. (in press) conducted a one-shot Prisoner’s
Dilemma experiment both offline (N¼30) and online (N¼155).
Both experiments used identical instructions, except for stake
size: subjects in the physical lab earned between $3 and $10 in
the game, while AMT subjects earned between $0.30 and $1.00.
The results emphasize the importance of making sure subjects
understand the instructions. After reading the instructions, but
prior to making their decisions, subjects were asked a series of
questions about the payoff structure. This allows a comparison of
those AMT subjects who did and did not understand the experi-
mental setup. They found that the cooperation level among the
74 AMT subjects who got all comprehension questions correct
was almost identical to what was observed in the physical lab
(physical lab, 37% C; online, 39% C; Chi2 test p¼0.811). Among the
81 AMT subjects who did not get all the questions correct,
however, cooperation was much higher, 54%, and roughly equal
to chance. Furthermore, Horton et al. asked two different kinds of
comprehension questions: qualitative questions about what deci-
sion was better or worse for each player, and quantitative
questions where participants had to perform detailed payoff
calculations. Their data show that nearly all subjects (88%) who
answered the qualitative questions correctly also performed the
payoff calculation correctly, and the results of the experiment are
virtually identical if only excluding based on the qualitative
questions. Thus qualitative comprehension questions may be
sufficient to ensure subjects understand the essence of the game.
Horton et al. also conducted two qualitative replications that
reproduce classical lab results. The first demonstrated the framing
effect by showing that the language with which a decision
problem is posed can change behavior. The second demonstrated
priming by showing that exposure to an unrelated stimulus prior
to the decision problem can change behavior (in this case, reading
a religious passage about charity increased cooperation in a
Prisoner’s Dilemma among subjects that believe in God).

A second direct replication using economic games was con-
ducted by Suri and Watts (2010). By designing a more complex,
specially-built set of web software tools, they were able to imple-
ment repeated play online. They recruited a large number of
subjects simultaneously from AMT, and redirected them to their
external game website. In their replication experiment, they had
N¼96 subjects play the same linear repeated public goods game
of Fehr and Gächter (2000). Subjects played a 10-round game in
groups of 4, and received information after each round about the
decisions of the other group members. Suri and Watts find
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quantitative agreement between contribution levels among their
AMT subjects and the N¼40 subjects in the physical lab study,
within each of 10 rounds of play. They also show that on AMT,
halving the stakes from 1 cent per unit earned in the game to
0.5 cents per unit earned does not significantly affect behavior.

A third direct replication used various social psychology tests
and compared N¼318 AMT subjects to both N¼141 students
from a Midwestern University and N¼137 visitors to an online
discussion board (Paolacci et al., 2010). They found no difference
across experiments in either attentiveness (measured by correctly
answering a trivial question) nor basic numeracy skills (measured
by the Subjective Numeracy Scale (Fagerlin et al., 2007)). They
also found very similar effect sizes in a task examining framing
effects (as in Horton et al. (in press)), and in two classic
psychological effects, the conjunction fallacy and outcome bias.

A large number of qualitative replications, demonstrating that
well-known psychological effects are also present among AMT
workers, have been conducted and presented online in various
AMT-related blogs. It has also been shown that AMT subjects are
much more diverse and representative of the US population than
the usual convenience sample of college undergrads, and that
AMT subjects display a similar level of consistency across a
battery of personality test questions as typically seen in other
experiments (Buhrmester et al., 2011).

4.1. New experiments on self-report demographics

To explore the truthfulness of answers to self-report survey/
demographic questions, I conducted two new AMT experiments
for this paper. In the first experiment, I took advantage of the fact
that a subject’s location can be independently verified by logging
their IP address. I recruited N¼176 AMT workers to complete a
short demographic questionnaire, including a question asking
their country of residence. I also logged each subject’s IP address,
and determined the country corresponding to that IP. I found that
the self-reported country of residence matched the country
implied by the IP address in 97.2% of subjects. Thus at least for
country of residence, self-report accuracy was very high on AMT.

For self-report questions other than country of residence, it is
not possible to directly verify responses. However, one can get
some insight into reliability by examining the consistency of
responses of a given worker across multiple studies. In the second
experiment, I examined the data from two separate studies
conducted some time apart, one of which involved 1920 workers
and the other of which involved 1222 workers. Among the
N¼100 workers who had participated in both studies, I found
that 96% of subjects reported the same gender in both studies;
93% of subjects reported within 1 year of the same age in both
studies; 98% of subjects reported the same country of residence in
both studies; 81% of subjects reported the same education level in
both studies; 82% of subjects reported within one bracket of the
same yearly income level in both studies (with brackets of o$5k,
$5–$10k, $10–$15k, $15–$25k, $25–$35k, $35–$50k, $50–$65k,
$65–$80k, $80–$100k and 4$100k); and 84% of subjects reported
within one point of the same strength of belief in God in both
studies (using a 10 point Likert scale). Thus there is some
variation in reliability across questions, but even the less reliable
questions are fairly consistent, and clearly indicate that most
subjects are not merely making random selections.
5. Limitations, potential pitfalls and words of caution

AMT offers an extremely powerful new tool for conducting
behavioral experiments. Yet as with any experimental method, there
are various limitations of AMT that are important to keep in mind.
Most obvious is the limitation on what kinds of experimental designs
can be implemented using AMT. Firstly, only experiments conducted
entirely over the computer are possible. For example, experiments
that correlate behavior with hormone levels (Apicella et al. 2008) or
genes (Dreber et al. 2009) cannot be conducing on AMT. It is also
technically somewhat difficult, although not impossible (Suri and
Watts, 2010), to conduct repeated games on AMT, or any other type
of game, which requires multiple participants interacting with real-
time feedback. Because you cannot be sure about exactly what
subjects are doing while completing the experiment, designs that
require complete control of subjects’ attention (such as those using
cognitive load manipulations) are also not practical on AMT. And
because subjects are not all physically together experimenters
cannot create absolute confidence in common knowledge (i.e.
completely convince subjects that all participants receive the same
information). A related issue is general participant trust in the
experimental instructions. In economic game experiments in parti-
cular, it is critical that subjects believe they will be paid as described
by the experimenter. To explore this issue, Horton et al., in press ran
a survey of participant attitudes, and found that AMT subjects were
only slightly less trusting than physical lab subjects.

A potential issue that might not be immediately obvious is non-
random attrition. On AMT, it is very easy for subjects to quit mid-
experiment. Thus if some treatments are more difficult or unplea-
sant than others, subjects may be more likely to drop out. In this
case, a confound is introduced into the experiment: the two
treatments differ not only in the experimental manipulation, but
also in the pool of subjects who participated. Researchers must be
vigilant to ensure drop-out rates are similar across treatments. For
example, a potentially off-putting or time-consuming manipulation
could be included in both experimental treatments—in one treat-
ment before the decision task of interest, and in the other treatment
after the decision. Thus attrition rates will be similar, but the
manipulation will only affect the decision in one treatment.

As described in the previous section, ensuring that subjects
understand the instructions is critical. This issue poses a larger
challenge on AMT than in the physical lab, for several reasons.
First, the experimenter is not present and cannot answer any
questions subjects might have. Second, many subjects are paying
substantially less attention on AMT compared to the lab. And
third, many subjects are not native English speakers, or generally
have lower English competence than college undergraduates.
AMT compensates for these comprehension issues by allowing
experimenters to recruit very large numbers of subjects. One easy
solution to this issue is to include detailed comprehension
questions, and then exclude from analysis (and deny payment
to) subjects who do not answer correctly. Also, of course,
researchers should make every effort to make their instructions
as simple and intelligible as possible.

Statistical analysis of experimental data relies on the assump-
tion that observations are independent (i.e. each observation
comes from a different person). AMT makes an effort to prevent
workers from having multiple accounts, and when a job is posted
on AMT, the default setting is that any given worker can only
complete that task once. Thus the multiple ID issue is not a
substantial problem on AMT. However, researchers must be
aware that should they re-post the same task twice, they are
likely to get a sizeable fraction of repeat participants. Should you
need to re-post a task, the job description can inform workers that
they are not eligible if they have completed other tasks for you
recently, and you can then reject the work (and discard the data)
from repeat participants. Additionally, subjects who complete a
job when it is first posted may differ systematically from later
subjects. Therefore it is very important to plan out all experi-
mental treatments ahead of time, such that subjects are uniformly
randomized across conditions.
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One general concern for running experiments, which theorists
may be unfamiliar with, is the need for ethics approval. Most
institutions have an Institutional Review Board (IRB), which must
approve any study involving human subjects before it can be
performed. Be sure to contact your IRB before conducting any
experiments on AMT. An ideal arrangement would involve a
general approval for experiments that fall within the range of
demands and payments typical of other jobs posted on AMT.

A final issue relates to false positives and multiple testing
(Ioannidis, 2005). The generally accepted threshold for statistical
significance in experiments is a 5% chance of a false positive
(i.e. po0.05). Thus if a given experiment in which no true effect is
present was run many times, on average 1 out of 20 experimental
runs would return a significant result just due to chance. Using
AMT, it becomes very easy to run the same experiment many
times. This presents a danger that researchers may (most likely
subconsciously) continue to re-run an experiment until a falsely
positive significant result is obtained, and then publish only the
significant result. Although this danger is also present in the
physical lab, it is much more acute using AMT precisely because
of AMT’s speed and low cost. This same speed and ease of AMT
experiments, however, also allows for more rapid replications and
follow-up studies (Pfeiffer et al., 2009), such that false positives
are likely to come to light much more quickly.
6. Conclusion

Integrating behavioral experiments with evolutionary models
is a promising approach for understanding the evolution of
human behavior. Experiments generate important insight into
the applicability of different models, and inspire new modeling
directions. It is particularly important for researchers designing
experiments to have a full grasp of the relevant theoretical
models, in order to properly connect the two methods of inquiry.
Yet thus far, relatively few evolutionary theorists have chosen to
conduct behavioral experiments, due at least in part to the
practical difficulties involved in laboratory research.

In this paper, I outline how online labor markets such as
Amazon Mechanical Turk have removed many of these practical
difficulties. I have also provided evidence that data collected on
AMT is valid, as well as pointing out limitations and potentially
problematic issues to be aware of when conducting AMT experi-
ments. AMT makes it easy for theorists to run experiments in
much the same way as they would run computer simulations.
This opens up a new, exciting world of investigation, and
promises to produce a wealth of fascinating new discoveries
about the evolution of human behavior in the coming years.
Acknowledgments

I think Benjamin Allen, Anna Dreber and Martin Nowak for
helpful comments on the main text, and Manfred Milinski and
Bettina Rockenbach for helpful comments on the appendix.
I gratefully acknowledge financial support from a grant from the
John Templeton Foundation.
Appendix A. Reward, punishment and cooperation in games
with reciprocity

While costly punishment has received the lion’s share of
attention, costly rewarding also plays an important role in human
prosociality. Costly rewarding, where one subject pays a cost to
give a benefit to another, is directly analogous to the Prisoner’s
Dilemma, and thus many such rewarding opportunities exist in
daily life. Allowing subjects to reward other group members in a
public goods game (second-party reward) is as effective as
second-party punishment in promoting cooperation in all but
the final period of fixed length public goods games (Sefton et al.,
2007; Sutter et al., 2010), and in indefinitely repeated public
goods games (Rand et al., 2009b), while neither reward nor
punishment promotes cooperation in a single one-shot public
goods game (Walker and Halloran, 2004). Rand et al. (2009b) also
find that when both reward and punishment are available in an
indefinitely repeated public goods game, a group’s probability to
reward high contributors is positively correlated with contribu-
tions and payoff, while no such correlations exist for the prob-
ability to punish low contributors; although surprisingly, the
opportunity for rewarding does not decrease the average
frequency of punishment. In a two-player proposer game where
the responder can either reward, punish, do both, or do neither,
the average proposal is highest when both reward and punish-
ment are possible, and is higher for reward only than for punish-
ment only (Andreoni et al., 2003). Taken together, these studies
clearly demonstrate that subjects have a taste for second-party
rewarding, and that rewards can be an important force for
promoting cooperation.

In addition to evidence for the effectiveness of second-party
rewarding, numerous experiments demonstrate a willingness to
engage in third-party rewarding. Even in one-shot anonymous
interactions where subjects observe the outcome of a dictator
game and can then pay to reward or punishment the dictator,
subjects are as likely to reward fair or generous behavior as they
are to punish selfish behavior (Almenberg et al., 2011). In the
presence of reputation, evolutionary game theoretic models show
that cooperation can spread through indirect reciprocity, where
my actions towards you depend on your previous actions towards
others (Nowak and Sigmund, 2005; Ohtsuki and Iwasa, 2006).
Consistent with these theoretical models, experiments show that
under various reputation systems, subjects will frequently reward
others, and in particular will preferentially reward those with a
past history of being cooperative (Milinski et al., 2001; Seinen and
Schram, 2006; Semmann et al., 2005; Wedekind and Milinski,
2000). A very elegant experiment shows that this tendency for
third-party rewarding can be harnessed to avert the tragedy of
the commons in a repeated public goods game (Milinski et al.,
2002). After each round, each of the 6 public goods game group
members is a donor for another randomly selected member as
recipient, but direct reciprocity is excluded. The donor has full
knowledge of the recipient’s past behavior, in both the public
goods game and the indirect reciprocity game, and then chooses
whether or not to incur a cost to confer a benefit on the recipient.
This setting is a mix of second-party rewarding for past actions
toward the group (which includes the rewarder) and third-party
rewarding for past actions towards others in the indirect recipro-
city game. Here rewarding is common and leads to stable high
levels of contribution in the public goods game. In another
experiment (Semmann et al., 2005) the donor is either a member
of the recipient’s or of another public goods group. Rewarding
occurs at the same level in either treatment and induces the same
level of contribution to the public good.

There is also a synergistic interaction between this rewarding
setup and the opportunity to self-select into an institution with
costly punishment (Rockenbach and Milinski, 2006). Groups of
eight subjects each played 20 periods of the public goods game. In
treatment ‘PUN&IR’, before each period, each player can choose
between joining a group in which the public goods game is
followed by both costly punishing and an indirect reciprocity
game, and a group in which the public goods game is followed
solely by an indirect reciprocity game. In treatment ‘PUN’, before
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each period, each player can choose between joining a group in
which the public goods game is followed by costly punishing and
a group in which the public good game is not combined with any
other option. In both treatments the punishment groups achieve
higher contributions than the no-punishment groups. Interest-
ingly, the subjects in the PUN&IR treatment prefer the punish-
ment opportunity group despite the presence of an alternative
group offering only the reciprocity option, and the combination of
indirect reciprocity and punishment results in the highest con-
tributions and the highest efficiency. Additionally, the availability
of indirect reciprocity changes how subjects chose to punish. In
the indirect PUN&IR treatment, fewer punishments occur, but
those that do are more focused on heavy free-riders. It is
interesting to note two important differences between these
results and those of the experiment with second party reward
and punishment discussed above (Rand et al., 2009b): adding
reward to punishment resulted in no increase in contributions or
payoffs in the second party setup, and no decrease in punishment
use; whereas the opposite is true in the Rockenbach and Milinski
setup. The source of these differences merits further study, but
may lie in the endogenous choice of punishment institution used
here—in this setup, punishment works as a sorting tool in
addition to its role in actually sanctioning low contributors.

In a related study, subjects have a choice each round between
a standard public goods game and a setting with reward and
punishment opportunities (Gurerk et al., 2006). Identities are
shuffled from round to round, and reward has a 1:1 technology
while punishment has a 3:1 technology. Almost all subjects
eventually switch to the rewardþpunishment institution, and
achieve much higher contributions than the game without tar-
geted interaction. The frequency of reward use decreases over
time, however. Both the lack of persistent identities and the 1:1
reward technology may contribute to the instability of rewarding
in this experimental setup.

For a more detailed discussion of reward and punishment in
public goods games, see Milinski and Rockenbach (this issue).
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Dal Bó, P., 2005. Cooperation under the shadow of the future: experimental
evidence from infinitely repeated games. American Economic Review 95,
1591–1604.
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Herrmann, B., Thoni, C., Gächter, S., 2008. Antisocial punishment across societies.
Science 319, 1362–1367.

Hofbauer, J., Sigmund, K., 1998. Evolutionary Games and Population Dynamics.
Cambridge University Press, Cambridge.

Horton, J.J., Rand, D.G., Zeckhauser, R.J. The online laboratory: conducting experi-
ments in a real labor market. Experimental Economics, in press, doi:10.1007/
s10683-011-9273-9.

Ioannidis, J.P.A., 2005. Why most published research findings are false. PLoS Med
2, e124.

Janssen, M.A., Bushman, C., 2008. Evolution of cooperation and altruistic punish-
ment when retaliation is possible. Journal of theoretical biology 254, 541–545.

Kandori, M., 1992. Social norms and community enforcement. The Review of
Economic Studies 59, 63–80.

Kreps, D.M., Wilson, R., 1982. Reputation and imperfect information. Journal of
economic theory 27, 253–279.

Mason, W., and Suri, S., 2010. Conducting behavioral research on Amazon’s
Mechanical Turk, Available at SSRN: /http://ssrn.com/abstract=1691163S.

Melis, A.P., Semmann, D., 2010. How is human cooperation different? Philosophi-
cal Transactions of the Royal Society B: Biological Sciences 365, 2663–2674.

Milinski, M., Semmann, D., Krambeck, H.J., 2002. Reputation helps solve the
‘tragedy of the commons’. Nature 415, 424–426.

Milinski, M., Semmann, D., Bakker, T.C.M., Krambeck, H.-J.r., 2001. Cooperation
through indirect reciprocity: image scoring or standing strategy? Proceedings
of the Royal Society of London Series B: Biological Sciences 268, 2495–2501.

Milinski, M., Rockenbach, B. On the interaction of the stick and the carrot in social
dilemmas. Journal of Theoretical Biology, this issue, doi:10.1016/j/jtbi.2011.03.
014.

Nikiforakis, N., 2008. Punishment and counter-punishment in public goods games:
can we still govern ourselves? Journal of Public Economics 92, 91–112.

Nowak, M., Sigmund, K., 1993. A strategy of win-stay, lose-shift that outperforms
tit-for-tat in the Prisoner’s Dilemma game. Nature 364, 56–58.

Nowak, M.A., 2006a. Five rules for the evolution of cooperation. Science 314,
1560–1563.

http://ssrn.com/abstract=1752366
dx.doi.org/10.1007/s10683-011-9273-9
dx.doi.org/10.1007/s10683-011-9273-9
http://ssrn.com/abstract=1691163
dx.doi.org/10.1016/j/jtbi.2011.03.014
dx.doi.org/10.1016/j/jtbi.2011.03.014


D.G. Rand / Journal of Theoretical Biology 299 (2012) 172–179 179
Nowak, M.A., 2006b. Evolutionary Dynamics: Exploring the Equations of Life.
Belknap press of Harvard University Press, Cambridge, MA and London,
England.

Nowak, M.A., Sigmund, K., 1992. Tit for tat in heterogeneous populations. Nature
355, 250–253.

Nowak, M.A., Sigmund, K., 2005. Evolution of indirect reciprocity. Nature 437,
1291–1298.

Ohtsuki, H., Iwasa, Y., 2006. The leading eight: social norms that can maintain
cooperation by indirect reciprocity. Journal of Theoretical Biology 239,
435–444.

Paolacci, G., Chandler, J., Ipeirotis, P.G., 2010. Running experiments on Amazon
Mechanical Turk. Judgment and Decision Making 5, 411–419.

Pfeiffer, T., Rand, D.G., Dreber, A., 2009. Decision-making in research tasks with
sequential testing. PLoS ONE 4, e4607.

Prelec, D.e., 2004. A Bayesian truth serum for subjective data. Science 306,
462–466.

Rand, D.G., Ohtsuki, H., Nowak, M.A., 2009a. Direct reciprocity with costly
punishment: generous tit-for-tat prevails. Journal of Theoretical Biology 256,
45–57.

Rand, D.G., Armao, Iv, J.J., Nakamaru, M., Ohtsuki, H., 2010. Anti-social punishment
can prevent the co-evolution of punishment and cooperation. Journal of
Theoretical Biology 265, 624–632.

Rand, D.G., Dreber, A., Ellingsen, T., Fudenberg, D., Nowak, M.A., 2009b. Positive
interactions promote public cooperation. Science 325, 1272–1275.

Rockenbach, B., Milinski, M., 2006. The efficient interaction of indirect reciprocity
and costly punishment. Nature 444, 718–723.

Roth, A.E., Prasnikar, V., Okuno-Fujiwara, M., Zamir, S., 1991. Bargaining and
market behavior in Jerusalem, Ljubljana, Pittsburgh, and Tokyo: an experi-
mental study. The American Economic Review 81, 1068–1095.

Sefton, M., Schupp, R., Walker, J.M., 2007. The Effect of rewards and sanctions in
provision of public goods. Economic Inquiry 45, 671–690.

Seinen, I., Schram, A., 2006. Social status and group norms: indirect reciprocity
in a repeated helping experiment. European Economic Review 50,
581–602.
Semmann, D., Krambeck, H.-J., Milinski, M., 2003. Volunteering leads to rock-
paper-scissors dynamics in a public goods game. Nature 425, 390–393.

Semmann, D., Krambeck, H.-J., Milinski, M., 2005. Reputation is valuable within
and outside one’s own social group. Behavioral Ecology and Sociobiology 57,
611–616.

Sigmund, K., De Silva, H., Traulsen, A., Hauert, C., 2010. Social learning promotes
institutions for governing the commons. Nature 466, 861–863.

Suri, S., Watts, D.J., 2011. Cooperation and contagion in web-based, networked
public goods experiments. PLoS ONE 6 (3), e16836, doi:10.1371/journal.pone.
0016836.

Sutter, M., Haigner, S., Kocher, M.G., 2010. Choosing the stick or the carrot?
endogenous institutional choice in social dilemma situations. Review of
Economic Studies 77, 1540–1566.

Traulsen, A., Hauert, C., De Silva, H., Nowak, M.A., Sigmund, K., 2009. Exploration
dynamics in evolutionary games. Proceedings of the National Academy of
Sciences 106, 709–712.

Traulsen, A., Semmann, D., Sommerfeld, R.D., Krambeck, H.-J., Milinski, M., 2010.
Human strategy updating in evolutionary games. Proceedings of National
Academy of Sciences of the United States of America 107, 2962–2966.

Ule, A., Schram, A., Riedl, A., Cason, T.N., 2009. Indirect punishment and generosity
toward strangers. Science 326, 1701–1704.

Walker, J.M., Halloran, M., 2004. Rewards and sanctions and the provision of
public goods in one-shot settings. Experimental Economics 7, 235–247.

Wedekind, C., Milinski, M., 1996. Human cooperation in the simultaneous and the
alternating Prisoner’s Dilemma: Pavlov versus generous tit-for-tat. Proceed-
ings of the National Academy of Sciences of the United States of America 93,
2686–2689.

Wedekind, C., Milinski, M., 2000. Cooperation through image scoring in humans.
Science 288, 850–852.

Wu, J.-J., Zhang, B.-Y., Zhou, Z.-X., He, Q.-Q., Zheng, X.-D., Cressman, R., Tao, Y.,
2009. Costly punishment does not always increase cooperation. Proceedings of
the National Academy of Sciences 106, 17448–17451.

Yamagishi, T., 1986. The provision of a sanctioning system as a public good.
Journal of Personality and Social Psychology 51, 110–116.

dx.doi.org/10.1371/journal.pone.0016836
dx.doi.org/10.1371/journal.pone.0016836

	The promise of Mechanical Turk: How online labor markets can help theorists run behavioral experiments
	Introduction
	Theory, experiments and human cooperation
	Online labor markets
	Replications using mechanical turk
	New experiments on self-report demographics

	Limitations, potential pitfalls and words of caution
	Conclusion
	Acknowledgments
	Reward, punishment and cooperation in games with reciprocity
	References




