
Conducting behavioral research on Amazon’s
Mechanical Turk

Winter Mason & Siddharth Suri

Psychonomic Society, Inc. 2011

Abstract Amazon’s Mechanical Turk is an online labor
market where requesters post jobs and workers choose which
jobs to do for pay. The central purpose of this article is to
demonstrate how to use this Web site for conducting
behavioral research and to lower the barrier to entry for
researchers who could benefit from this platform. We describe
general techniques that apply to a variety of types of research
and experiments across disciplines. We begin by discussing
some of the advantages of doing experiments on Mechanical
Turk, such as easy access to a large, stable, and diverse subject
pool, the low cost of doing experiments, and faster iteration
between developing theory and executing experiments. While
other methods of conducting behavioral research may be
comparable to or even better than Mechanical Turk on one or
more of the axes outlined above, we will show that when
taken as a whole Mechanical Turk can be a useful tool for
many researchers. We will discuss how the behavior of
workers compares with that of experts and laboratory subjects.
Then we will illustrate the mechanics of putting a task on
Mechanical Turk, including recruiting subjects, executing the
task, and reviewing the work that was submitted. We also
provide solutions to common problems that a researcher might
face when executing their research on this platform, including
techniques for conducting synchronous experiments, methods
for ensuring high-quality work, how to keep data private, and
how to maintain code security.

Keywords Crowdsourcing .Online research .Mechanical turk

Introduction

The creation of the Internet and its subsequent widespread
adoption has provided behavioral researchers with an addition-
al medium for conducting studies. In fact, researchers from a
variety of fields, such as economics (Hossain &Morgan, 2006;
Reiley, 1999), sociology (Centola, 2010; Salganik, Dodds, &
Watts, 2006), and psychology (Birnbaum, 2000; Nosek,
2007), have used the Internet to conduct behavioral experi-
ments.1 The advantages and disadvantages of online behav-
ioral research, relative to laboratory-based research, have been
explored in depth (see, e.g., Kraut et al., 2004; Reips, 2000).
Moreover, many methods for conducting online behavioral
research have been developed (e.g., Birnbaum, 2004; Gosling
& Johnson, 2010; Reips, 2002; Reips & Birnbaum, 2011). In
this article, we describe a tool that has emerged in the last
5 years for conducting online behavioral research: crowd-
sourcing platforms. The term crowdsourcing has its origin in
an article by Howe (2006), who defined it as a job outsourced
to an undefined group of people in the form of an open call.
The key benefit of these platforms to behavioral researchers is
that they provide access to a persistently available, large set of
people who are willing to do tasks—including participating in
research studies—for relatively low pay. The crowdsourcing
site with one of the largest subject pools is Amazon’s
Mechanical Turk2 (AMT), so it is the focus of this article.

1 This is clearly not an exhaustive review of every study done on the
Internet in these fields. We aim only to provide some salient examples.
2 The name “Mechanical Turk” comes from a mechanical chess-
playing automaton from the turn of the 18th century, designed to look
like a Turkish “sorcerer,” which was able to move pieces and beat
many opponents. While it was a technological marvel at the time, the
real genius lay in a diminutive chess master hidden in the workings of
the machine (see http://en.wikipedia.org/wiki/The_Turk). Amazon's
Mechanical Turk was designed to hide human workers in an automatic
process; hence, the name of the platform.

W. Mason (*) : S. Suri
Yahoo! Research,
New York, USA
e-mail: m@winteram.com

S. Suri
e-mail: suri@yahoo-inc.com

Behav Res
DOI 10.3758/s13428-011-0124-6

http://en.wikipedia.org/wiki/The_Turk

Originally, Amazon built Mechanical Turk specifically
for human computation tasks. The idea behind its design
was to build a platform for humans to do tasks that are very
difficult or impossible for computers, such as extracting
data from images, audio transcription, and filtering adult
content. In its essence, however, what Amazon created was
a labor market for microtasks (Huang, Zhang, Parkes,
Gajos, & Chen, 2010). Today, Amazon claims hundreds of
thousands of workers and roughly ten thousand employers,
with AMT serving as the meeting place and market
(Ipeirotis, 2010a; Pontin, 2007). For this reason, it also
serves as an ideal platform for recruiting and compensating
subjects in online experiments. Since Mechanical Turk
was initially invented for human computation tasks,
which are generally quite different than behavioral
experiments, it is not a priori clear how to conduct
certain types of behavioral research, such as synchronous
experiments, on this platform. One of the goals of this
work is to exhibit how to achieve this.

Mechanical Turk has already been used in a small
number of online studies, which fall into three broad
categories. First, there is a burgeoning literature on how to
combine the output of a small number of cheaply paid
workers in a way that rivals the quality of work by highly
paid, domain-specific experts. For example, the output of
multiple workers was combined for a variety of tasks
related to natural language processing (Snow, O'Connor,
Jurafsky, & Ng, 2008) and audio transcription (Marge,
Banerjee, & Rudnicky, 2010) to be used as input to other
research, such as machine-learning tasks. Second, there
have been at least two studies showing that the behavior of
subjects on Mechanical Turk is comparable to the behavior
of laboratory subjects (Horton, Rand, & Zeckhauser, in
press; Paolacci, Chandler, & Ipeirotis, 2010). Finally, there
are a few studies that have used Mechanical Turk for
behavioral experiments, including Eriksson and Simpson
(2010), who studied gender, culture, and risk preferences;
Mason and Watts (2009), who used it to study the effects
of pay rate on output quantity and quality; and Suri and
Watts (2011), who used it to study social dilemmas over
networks. All of these examples suggest that Mechanical
Turk is a valid research environment that scientists are
using to conduct experiments.

Mechanical Turk is a powerful tool for researchers that
has only begun to be tapped, and in this article, we offer
insights, instructions, and best practices for using this tool.
In contrast to previous work that has demonstrated the
validity of research on Mechanical Turk (Buhrmester,
Kwang, & Gosling, in press; Paolacci et al., 2010), the
purpose of this article is to show how Mechanical Turk can
be used for behavioral research and to demonstrate best
practices that ensure that researchers quickly get high-
quality data from their studies.

There are two classes of researchers who may benefit
from this article. First, there are many researchers who
are not aware of Mechanical Turk and what is possible to
do with it. In this guide, we exhibit the capabilities of
Mechanical Turk and several possible use cases, so
researchers can decide whether this platform will aid
their research agenda. Second, there are researchers who
are already interested in Mechanical Turk as a tool for
conducting research but may not be aware of the
particulars involved with and/or the best practices for
conducting research on Mechanical Turk. The relevant
information on the Mechanical Turk site can be difficult
to find and is directed toward human computation tasks,
as opposed to behavioral research, so here we offer a
detailed “how-to” guide for conducting research on
Mechanical Turk.

Why Mechanical Turk?

There are numerous advantages to online experimentation,
many of which have been detailed in prior work (Reips,
2000, 2002). Naturally, Mechanical Turk shares many of
these advantages, but also has some additional benefits. We
highlight three unique benefits of using Mechanical Turk as
a platform for running online experiments: (1) subject pool
access, (2) subject pool diversity, and (3) low cost. We then
discuss one of the key advantages of online experimenta-
tion that Mechanical Turk shares: faster iteration between
theory development and experimentation.

Subject pool access Like other online recruitment methods,
Mechanical Turk offers access to subjects for researchers
who would not otherwise have access, such as research-
ers at smaller colleges and universities with limited
subject pools (Smith & Leigh, 1997) or nonacademic
researchers, with whom recruitment is generally limited to
ads posted online (e.g., study lists, e-mail lists, social
media, etc.) and flyers posted in public areas. While some
research necessarily requires subjects to actually come
into the lab, there are many kinds of research that can be
done online.

Mechanical Turk offers the unique benefit of having an
existing pool of potential subjects that remains relatively
stable over time. For instance, many academic researchers
experience the drought/flood cycle of undergraduate subject
pools, with the supply of subjects exceeding demand at the
beginning and end of a semester and then dropping to
almost nothing at all other times. In addition, standard
methods of online experimentation, such as building a Web
site containing an experiment, often have “cold-start”
problems, where it takes time to recruit a panel of reliable
subjects. Aside from some daily and weekly seasonalities,
the subject availability on Mechanical Turk is fairly stable

Behav Res

(Ipeirotis, 2010a), with fluctuations in supply largely due to
variability in the number of jobs available in the market.

The single most important feature that Mechanical Turk
provides is access to a large, stable pool of people willing to
participate in experiments for relatively low pay.

Subject pool diversity Another advantage of Mechanical
Turk is that the workers tend to be from a very diverse
background, spanning a wide range of age, ethnicity, socio-
economic status, language, and country of origin. As with
most subject pools, the population of workers on AMT is
not representative of any one country or region. However,
the diversity on Mechanical Turk facilitates cross-cultural
and international research (Eriksson & Simpson, 2010) at a
very low cost and can broaden the validity of studies
beyond the undergraduate population. We give detailed
demographics of the subject pool in the Workers section.

Low cost and built-in payment mechanism One distinct
advantage of Mechanical Turk is the low cost at which
studies can be conducted, which clearly compares favorably
with paid laboratory subjects and comparably to other
online recruitment methods. For example, Paolacci et al.
(2010) replicated classic studies from the judgment and
decision-making literature at a cost of approximately
$1.71 per hour per subject and obtained results that
paralleled the same studies conducted with undergraduates in
a laboratory setting. Göritz, Wolff, and Goldstein (2008)
showed that the hassle of using a third-party payment
mechanism, such as PayPal, can lower initial response rates
in online experiments. Mechanical Turk skirts this issue by
offering a built-in mechanism to pay workers (both flat rate
and bonuses) that greatly reduces the difficulties of compen-
sating individuals for their participation in studies.

Faster theory/experiment cycle One implicit goal in
research is to maximize the efficiency with which one
can go from generating hypotheses to testing them,
analyzing the results, and updating the theory. Ideally,
the limiting factor in this process is the time it takes to
do careful science, but all too often, research is delayed
because of the time it takes to recruit subjects and
recover from errors in the methodology. With access to a
large pool of subjects online, recruitment is vastly
simplified. Moreover, experiments can be built and put
on Mechanical Turk easily and rapidly, which further reduces
the time to iterate the cycle of theory development and
experimental execution.

Finally, we note that other methods of conducting
behavioral research may be comparable to or even better
than Mechanical Turk on one or more of the axes outlined
above, but taken as a whole, it is clear that Mechanical Turk
can be a useful tool for many researchers.

Validity of worker behavior

Given the novel nature of Mechanical Turk, most of the
initial studies focused on evaluating whether it could
effectively be used as a means of collecting valid data. At
first, these studies focused on whether workers on Mechanical
Turk could be used as substitutes for domain-specific experts.
For instance, Snow et al. (2008) showed that for a variety of
natural language processing tasks, such as affect recognition
and word similarity, combining the output of just a few
workers can equal the accuracy of expert labelers. Similarly,
Marge et al. (2010) compared workers’ audio transcriptions
with domain experts and found that after a small bias
correction, the combined outputs of the workers were of
a quality comparable to that of the experts. Urbano,
Morato, Marrero, and Martin (2010) crowdsourced similarity
judgments on pieces of music for the purposes of music
information retrieval. Using their techniques, they obtained a
partially ordered list of similarity judgments at a far cheaper
cost than hiring experts, while maintaining high agreement
between the workers and the experts. Alonso and Mizzaro
(2009) conducted a study in which workers were asked
to rate the relevance of pairs of documents and topics
and compared this with a gold standard given by experts.
The output of the Turkers was similar in quality to that
of the experts.

Of greater interest to behavioral researchers is whether
the results of studies conducted on Mechanical Turk are
comparable to results obtained in other online domains,
as well as offline settings. To this end, Buhrmester et al.
(in press) compared Mechanical Turk subjects with a large
Internet sample with respect to several psychometric
scales and found no meaningful differences between the
populations, as well as high test–retest reliability in the
Mechanical Turk population. Additionally, Paolacci et al.
(2010) conducted replications of standard judgment and
decision-making experiments on Mechanical Turk, as well
as with subjects recruited through online discussion
boards and subjects recruited from the subject pool at a
large Midwestern university. The studies they replicated
were the “Asian disease” problem to test framing effects
(Tversky & Kahneman, 1981), the “Linda” problem to test
the conjunction fallacy (Tversky & Kahneman, 1983), and
the “physician” problem to test outcome bias (Baron &
Hershey, 1988). Quantitatively, there were only very slight
differences between the results from Mechanical Turk and
subjects recruited using the other methods, and qualita-
tively, the results were identical. This is similar to the
results of Birnbaum (2000), who found that Internet users
were more logically consistent in their decisions than were
laboratory subjects.

There have also been a few studies that have compared
Mechanical Turk behavior with laboratory behavior. For

Behav Res

example, the “Asian disease” problem (Tversky & Kahneman,
1981) was also replicated by Horton et al. (in press), who also
obtained qualitatively similar results. In the same study, the
authors found that workers “irrationally” cooperated in the
one-shot Prisoner’s Dilemma game, replicating previous
laboratory studies (e.g., Cooper, DeJong, Forsythe, & Ross,
1996). They also found, in a replication of another, more
recent laboratory study (Shariff & Norenzayan, 2007), that
providing a religious prime before the game increased the
level of cooperation. Suri and Watts (2011) replicated a public
goods experiment that was conducted in the classroom (Fehr
& Gachter, 2000), and despite the difference in context and
the relatively lower pay on Mechanical Turk, there were no
significant differences from a prior study conducted in the
classroom (Fehr & Gachter, 2000).

In summary, there are numerous studies that show
correspondence between the behavior of workers on
Mechanical Turk and behavior offline or in other online
contexts. While there are clearly differences between
Mechanical Turk and offline contexts, evidence that
Mechanical Turk is a valid means of collecting data is
consistent and continues to accumulate.

Organization of this guide

In the following sections, we begin with a high-level
overview of Mechanical Turk, followed by an exposition
of methods for conducting different types of studies on
Mechanical Turk. In the first half, we describe the basics
of Mechanical Turk, including who uses it and why, and
the general terminology associated with the platform. In
the second half, we describe, at a conceptual level, how
to conduct experiments on Mechanical Turk. We will
focus on new concepts that come up in this environment
that may not arise in the laboratory or in other online
settings around the issues of ethics, privacy, and security.
In this section, we also discuss the online community
that has sprung up around Mechanical Turk. We
conclude by outlining some interesting open questions
regarding research on Mechanical Turk. We also include
an appendix with engineering details required for
building and conducting experiments on Mechanical
Turk, for researchers and programmers who are building
their experiments.

Mechanical Turk basics

There are two types of players on Mechanical Turk:
requesters and workers. Requesters are the “employers,”
and the workers (also known as Turkers or Providers) are
the “employees”—or more accurately, the “independent
contractors.” The jobs offered on Mechanical Turk are

referred to as Human Intelligence Tasks (HITs). In this
section, we discuss each of these concepts in turn.

Workers

In March of 2007, the New York Times reported that there
were more than 100,000 workers on Mechanical Turk in
over 100 countries (Pontin, 2007). Although this interna-
tional diversity has been confirmed in many subsequent
studies (Mason & Watts, 2009; Paolacci et al., 2010; Ross,
Irani, Silberman, Zaldivar, & Tomlinson, 2010), as of this
writing the majority of workers come from the United
States and India, because Amazon allows cash payment
only in U.S. dollars and Indian Rupees—although workers
from any country can spend their earnings on Amazon.com.

Over the past 3 years, we have collected demographics
for nearly 3,000 unique workers from five different studies
(Mason & Watts, 2009; Suri & Watts, 2011). We compiled
these studies, and of the 2,896 workers, 12.5% chose not to
give their gender, and of the remainder, 55% reported being
female and 45% reported being male. These demographics
agree with other studies that have reported that the majority
of U.S. workers on Mechanical Turk are female (Ipeirotis,
2010b; Ross et al., 2010). The median reported age of
workers in our sample is 30 years old, and the average age
is roughly 32 years old, as can be seen in Fig. 1; the overall
shape of the distribution resembles reported ages in other
Internet-based research (Reips, 2001). The different studies
we compiled used different ranges when collecting infor-
mation about income, so to summarize we classify workers
by the top of their declared income range, which can be
seen in Fig. 2. This shows that the majority of workers earn
roughly U.S. $30 k per annum, although some respondents
reported earning over $100 k per year.

Having multiple studies also allows us to check the
internal consistency of these self-reported demographics.
Of the 2,896 workers, 207 (7.1%) participated in exactly
two studies, and of these 207, only 1 worker (0.4%)
changed the answer on gender, age, education, or income.
Thus, we conclude that the internal consistency of self-
reported demographics on Mechanical Turk is high. This
agrees with Rand (in press), who also found consistency in
self-reported demographics on Mechanical Turk, and with
Voracek, Stieger, and Gindl (2001), who compared the
gender reported in an online survey (not on Mechanical
Turk) conducted at the University of Vienna with that in the
school’s records and found a false response rate below 3%.

Given the low wages and relatively high income, one
may wonder why people choose to work on Mechanical
Turk at all. Two independent studies asked workers to
indicate their reasons for doing work on Mechanical Turk.
Ross et al. (2010) reported that 5% of U.S. workers and
13% of Indian workers said “MTurk money is always

Behav Res

necessary to make basic ends meet.” Ipeirotis (2010b)
asked a similar question but delved deeper into the
motivations of the workers. He found that 12% of U.S.
workers and 27% of Indian workers reported that
“Mechanical Turk is my primary source of income.”
Ipeirotis (2010b) also reported that roughly 30% of both
U.S. and Indian workers indicated that they were currently

unemployed or held only a part-time job. At the other end
of the spectrum, Ross and colleagues asked how important
money earned on Mechanical Turk was to them: Only 12%
of U.S. workers and 10% of Indian workers indicated that
“MTurk money is irrelevant,” implying that the money
made through Mechanical Turk is at least relevant to the
vast majority of workers. The modal response for both U.S.
and Indian workers was that the money was simply nice
and might be a way to pay for “extras.” Perhaps the best
summary statement of why workers do tasks on Mechanical
Turk is the 59% of Indian workers and 69% of U.S.
workers who agreed that “Mechanical Turk is a fruitful way
to spend free time and get some cash” (Ipeirotis, 2010b).
What all of this suggests is that most workers are not trying
to scrape together a living using Mechanical Turk (fewer
than 8% reported earning more than $50/week on the site).

The number of workers available at any given time is not
directly measurable. However, Ipeirotis (2010a) has tracked
the number of HITs created and available every hour (and
recently, every minute) over the past year and has used
these statistics to infer the number of HITs being completed.
With this information, he has determined that there are
slight seasonalities with respect to time of day and day of
week. Workers tend to be more abundant between
Tuesday and Saturday, and Huang et al. (2010) found
faster completion times between 6 a.m. and 3 p.m. GMT,
(which resulted in a higher proportion of Indian workers).
Ipeirotis (2010a) also found that over half of the HIT
groups are completed in 12 hours or less, suggesting a
large active worker pool.

To become a worker, one must create a worker account
on Mechanical Turk and an Amazon Payments account into
which earnings can be deposited. Both of these accounts
merely require an e-mail address and a mailing address.
Any worker, from anywhere in the world, can spend the
money he or she earns on Mechanical Turk on the
Amazon.com Web site. As was mentioned before, to be
able to withdraw their earnings as cash, workers must take
the additional step of linking their Payments account to a
verifiable U.S. or Indian bank account. In addition, workers
can transfer money between Amazon’s Payment accounts.
While having more than one account is against Amazon’s
Terms of Service, it is possible, although somewhat tedious,
for workers to earn money using multiple accounts and
transfer the earnings to one account to either be spent on
Amazon.com or withdrawn. Requesters who use external
HITs (see The Anatomy of a HIT section) can guard against
multiple submissions by the same worker by using browser
cookies and tracking IP addresses, as Birnbaum (2004)
suggested in the context of general online experiments.

Another important policy forbids workers from using
programs (“bots”) to automatically do work for them.
Although infringements of this policy appear to be rare (but

Income (maximum)

co
un

t

0

200

400

600

800

1000

0 20000 40000 60000 80000 100000 120000 140000 160000

Fig. 2 Distribution of the maximum of the income (in U.S. dollars)
interval self-reported by workers

Reported Age of Turkers

D
en

si
ty

0.00

0.01

0.02

0.03

0.04

0.05

20 40 60 80

Fig. 1 Histogram (gray) and density plot (black) of reported ages of
workers on Mechanical Turk

Behav Res

see McCreadie, Macdonald, & Ounis, 2010), there are also
legitimate workers who could best be described as
spammers. These are individuals who attempt to make as
much money completing HITs as they can, without regard
to the instructions or intentions of the requester. These
individuals might also be hard to discriminate from bots.
Surveys are favorite targets for these spammers, since they
can be completed easily and are plentiful on Mechanical
Turk. Fortunately, Mechanical Turk has a built-in reputation
system for workers: Every time a requester rejects a
worker’s submission, it goes on their record. Subsequent
requesters can then refuse workers whose rejection rate
exceeds some specified threshold or can block specific
workers who previously submitted bad work. We will
revisit this point when we describe methods for ensuring
data quality.

Requesters

The requesters who put up the most HITs and groups of
HITs on Mechanical Turk are predominantly companies
automating portions of their business or intermediary
companies that post HITs on Mechanical Turk on the behalf
of other companies (Ipeirotis, 2010a). For example, search
companies have used Mechanical Turk to verify the
relevance of search results, online stores have used it to
identify similar or identical products from different sellers,
and online directories have used it to check the accuracy
and “freshness” of listings. In addition, since businesses
may not want to or be able to interact directly with
Mechanical Turk, intermediary companies have arisen, such
as Crowdflower (previously called Dolores Labs) and
Smartsheet.com, to help with the process and guarantee
results. As has been mentioned, Mechanical Turk is also
used by those interested in machine learning, since it
provides a fast and cheap way to get labeled data such as
tagged images and spam classifications (for more market-
wide statistics of Mechanical Turk, see Ipeirotis, 2010a).

In order to run studies on Mechanical Turk, one must
sign up as a requester. There are two or three accounts
required to register as a requester, depending on how one
plans to interface with Mechanical Turk: a requester
account, an Amazon Payments Account, and (optionally)
an Amazon Web Services (AWS) account.

One can sign up for a requester account at https://
requester.mturk.com/mturk/beginsignin.3 It is advisable to
use a unique e-mail address for running experiments,
preferably one that is associated with the researcher or the
research group, because workers will interact with the
researcher through this account and this e-mail address.

Moreover, the workers will come to learn a reputation
and possibly develop a relationship with this account on
the basis of the jobs being offered, the money being
paid, and, on occasion, direct correspondence. Similarly,
we recommend using a name that clearly identifies the
researcher. This does not have to be the researcher’s
actual name (although it could be) but also should be
sufficiently distinctive that the workers know who they
are working for. For example, the requester name
“University of Copenhagen” could refer to many re-
search groups, and workers might be unclear about who
is actually doing the research; the name “Perception Lab
at U. Copenhagen” would be better.

To register as a requester, one must also create an
Amazon Payments account (https://payments.amazon.com/
sdui/sdui/getstarted) with the same account details as those
provided for the requester account. At this point, a funding
source is required, which can be either a U.S. credit card or
a U.S. bank account. Finally, if one intends to interact with
Mechanical Turk programatically, one must also create an
AWS account at https://aws-portal.amazon.com/gp/aws/
developer/registration/index.html. This provides one with
the unique digital keys necessary to interact with the
Mechanical Turk Application Programming Interface
(API), which is discussed in detail in the Programming
interfaces section of the Appendix.

Although Amazon provides a built-in mechanism for
tracking the reputation of the workers, there is no
corresponding mechanism for the requesters. As a result,
one might imagine that unscrupulous requesters could
refuse to pay their workers, irrespective of the quality of
their work. In such a case, there are two recourses for the
aggrieved workers. One recourse is to report this to
Amazon. If repeated offenses have occurred, the requester
will be banned. Second, there are Web sites where
workers share experiences and rate requesters (see the
Turker community section for more details). Requesters
that exploit workers would have an increasingly difficult
time getting work done because of these external reputa-
tion mechanisms.

The Anatomy of a HIT

All of the tasks available on Mechanical Turk are listed
together on the site in a standardized format that allows the
workers to easily browse, search, and choose between the
jobs being offered. An example of this is shown in Fig. 3.
Each job posted consists of many HITs of the same “HIT
type,” meaning that they all have the same characteristics.
Each HIT is displayed with the following information: the
title of the HIT, the requester who created the HIT, the wage
being offered, the number of HITs of this type available to
be worked on, how much time the requester has allotted for

3 The Mechanical Turk Web site can be difficult to search and
navigate, so we will provide URLs whenever possible.

Behav Res

https://requester.mturk.com/mturk/beginsignin
https://requester.mturk.com/mturk/beginsignin
https://payments.amazon.com/sdui/sdui/getstarted
https://payments.amazon.com/sdui/sdui/getstarted
https://aws-portal.amazon.com/gp/aws/developer/registration/index.html
https://aws-portal.amazon.com/gp/aws/developer/registration/index.html

completing the HIT, and when the HIT expires. By clicking
on a link for more information, the worker can also see a
longer description of the HIT, keywords associated with the
HIT, and what qualifications are required to accept the HIT.
We elaborate on these qualifications later, which restrict
who can work on a HIT and, sometimes, who can preview
it. If the worker is qualified to preview the HIT, he or she
can click on a link and see the preview, which typically
shows what the HITwill look like when he or she works on
the task (see Fig. 4 for an example HIT).

All of this information is determined by the requester
when creating the HIT, including the qualifications needed
to preview or accept the HIT. A very common qualification
requires that over 90% of the assignments a worker has
completed have been accepted by the requesters. Another
common type of requirement is to specify that workers
must reside in a specific country. Requesters can also
design their own qualifications. For example, a requester
could require the workers to complete some practice items
and correctly answer questions about the task as a
prerequisite to working on the actual assignments. More
than one of these qualifications can be combined for a
given HIT, and workers always see what qualifications are
required and their own value for that qualification (e.g.,
their own acceptance rate).

Another parameter the requester can set when creating a
HIT is how many “assignments” each HIT has. A single
HIT can be made up of one or more assignments, and a
worker can do only one assignment of a HIT. For example,
if the HITwere a survey and the requester only wanted each
worker to do the survey once, he or she would make one

HIT with many assignments. As another example, if the
task was labeling images and the requester wanted three
different workers to label every image (say, for data quality
purposes), the requester would make as many HITs as there
are images to be labeled, and each HIT would have three
assignments.

When browsing for tasks, there are several criteria the
workers can use to sort the available jobs: how recently
the HIT was created, the wage offered per HIT, the total
number of available HITs, how much time the requester
allotted to complete each HIT, the title (alphabetical),
and how soon the HIT expires. Chilton, Horton, Miller,
and Azenkot (2010) showed that the criterion most
frequently used to find HITs is the “recency” of the HIT
(when it was created), and this has led some to
periodically add available HITs to the job in order to
make it appear as though the HIT is always fresh. While
this undoubtedly works in some cases, Chilton and
colleagues also found an outlier group of recent HITs
that were rarely worked on—presumably, these are the
jobs that are being continually refreshed but are unappealing
to the workers.

The offered wage is not often used for finding HITs,
and Chilton et al., (2010) found a slight negative
relationship at the highest wages between the probability
of a HIT being worked on and the wage offered. This
finding is reasonably explained by unscrupulous requesters
using high wages as bait for naive workers—which is
corroborated by the finding that higher paying HITs are more
likely to be worked on, once the top 60 highest paying HITs
have been excluded.

Fig. 3 Screenshot of the Mechanical Turk marketplace

Behav Res

Internal or external HITs Requesters can create HITs in two
different ways, as internal or external HITs. An internal HIT
uses templates offered by Amazon, in which the task and all
of the data collection are done on Amazon’s servers. The
advantage of these types of HITs is that they can be
generated very quickly and the most one needs to know to
build them is HTML programming. The drawback is that
they are limited to be single-page HTML forms. In an
external HIT, the task and data are kept on the requester’s
server and are provided to the workers through a frame on
the Mechanical Turk site, which has the benefit that the
requester can design the HIT to do anything he or she is
capable of programming. The drawback is that one needs
access to an external server and, possibly, more advanced
programming skills. In either case, there is no explicit cue
that the workers can use to differentiate between internal
and external HITs, so there is no difference from the
workers’ perspective.

Lifecycle of HIT The standard process for HITs on
Amazon’s Mechanical Turk begins with the creation of the
HIT, designed and set up with the required information.
Once the requester has created the HIT and is ready to have
it worked on, the requester posts the HIT to Mechanical
Turk. A requester can post as many HITs and as many
assignments as he or she wants, as long as the total

amount owed to the workers (plus fees to Amazon) can
be covered by the balance of the requester’s Amazon
Payments account.

Once the HIT has been created and posted to Mechanical
Turk, workers can see it in the listings of HITs and choose to
accept the task. Each worker then does the work and submits
the assignment. After the assignment is complete, requesters
review the work submitted and can accept or reject any or all
of the assignments.When the work is accepted, the base pay is
taken from the requester’s account and put into the worker’s
account. At this point requesters can also grant bonuses to
workers. Amazon charges the requesters 10% of the total pay
granted (base pay plus bonus) as a service fee, with a
minimum of $0.005 per HIT.

If there are more HITs of the same type to work on after
the workers complete an assignment, they are offered the
opportunity to work on another HITof the same type. There
is even an option to automatically accept HITs of the same
type after completing one HIT. Most HITs have some kind
of initial time cost for learning how to do the task correctly,
and so it is to the advantage of workers to look for tasks
with many HITs available. In fact, Chilton et al. (2010)
found that the second most frequently used criterion for
sorting is the number of HITs offered, since workers look
for tasks where the investment in the initial overhead will
pay off with lots of work to be done. As was mentioned, the

Fig. 4 Screenshot of an example image classification HIT

Behav Res

requester can prevent this behavior by creating a single HIT
with multiple assignments, so that workers cannot have
multiple submissions.

The HIT will be completed and will disappear from the
list on Mechanical Turk when either of two things occurs:
All of the assignments for the HIT have been submitted, or
the HIT expires. As a reminder, both the number of
assignments that make up the HIT and the expiration time
are defined by the requester when the HIT is created. Also,
both of these values can be increased by the requester while
the HIT is still running.

Reviewing work Requesters should try to be as fair as
possible when judging which work to accept and reject. If a
requester is viewed as unfair by the worker population, that
requester will likely have a difficult time recruiting workers
in the future. Many HITs require the workers to have an
approval rating above a specified threshold, so unfairly
rejecting work can result in workers being prevented
from doing other work. Most importantly, whenever
possible requesters should be clear in the instructions of
the HIT about the criteria on which work will be
accepted or rejected.

One typical criterion for rejecting a HIT is if it disagrees
with the majority response or is a significant outlier (Dixon,
1953). For example, consider a task where workers classify
a post from Twitter as spam or not spam. If four workers
rate the post as spam and one rates it as not spam, this may
be considered valid grounds for rejecting the minority
opinion. In the case of surveys and other tasks, a requester
may reject work that is done faster than a human could
have possibly done the task. Requesters also have the
option of blocking workers from doing their HIT. This
extreme measure should be taken only if a worker has
repeatedly submitted poor work or has otherwise tried to
illicitly get money from the requester.

Improving HIT efficiency

How much to pay One of the first questions asked by new
requesters on Mechanical Turk is how much to pay for a
task. Often, rather than anchoring on the costs for online
studies, researchers come with the prior expectation based on
laboratory subjects, who typically cost somewhat more than
the current minimum wage. However, recent research on the
behavior of workers (Chilton et al., 2010) demonstrated that
workers had a reservation wage (the least amount of pay for
which they would do the task) of only $1.38 per hour, with
an average effective hourly wage of $4.80 for workers
(Ipeirotis, 2010a).

There are very good reasons for paying more in lab
experiments than on Mechanical Turk. Participating in a
lab-based experiment requires aligning schedules with the

experimenter, travel to and from the lab, and the effort
required to participate. On Mechanical Turk, the effort to
participate is much lower since there are no travel costs,
and it is always on the worker’s schedule. Moreover,
because so many workers are using AMT as a source of
extra income using free time, many are willing to accept
lower wages than they might otherwise. Others have argued
that because of the necessity for redundancy in collecting
data (to avoid spammers and bad workers), the wage that
might otherwise go to a single worker is split among the
redundant workers.4 We discuss some of the ethical argu-
ments around the wages on Mechanical Turk in the Ethics
and privacy section.

A concern that is often raised is that lower pay leads to
lower quality work. However, there is evidence that for at
least some kinds of tasks, there seems to be little to no
effect of wage on the quality of work obtained (Marge et
al., 2010; Mason & Watts, 2009). Mason and Watts used
two tasks in which they manipulated the wage earned on
Mechanical Turk, while simultaneously measuring the
quantity and quality of work done. In the first study, they
found that the number of tasks completed increased with
greater wages (from $0.01 to $0.10) but that there was no
difference in the quality of work. In the second study, they
found that subjects did more tasks when they received pay
than when they received no pay per task but saw no effect
of actual wage on quantity or quality of the work.

These results are consistent with the findings from the
survey paper of Camerer and Hogarth (1999), which
showed that for most economically motivated experiments,
varying the size of the incentives has little to no effect. This
survey article does, however, indicate that there are classes
of experiments, such as those based on judgments and
decisions (e.g., problem solving, item recognition/recall,
and clerical tasks) where the incentive scheme has an effect
on performance. In these cases, however, there is usually a
change in behavior going from paying zero to some low
amount and little to no change in going from a low amount
to a higher amount. Thus, the norm on Mechanical Turk of
paying less than one would typically pay laboratory
subjects should not impact large classes of experiments.

Consequently, it is often advisable to start by paying less
than the expected reservation wage, and then increasing the
wage if the rate of completed work is too low. Also, one
way to increase the incentive to subjects without drastically
increasing the cost to the requester is to offer a lottery to
subjects. This has been done in other online contexts
(Göritz, 2008). It is worth noting that requesters can post
HITs that pay nothing, although these are rare and unlikely
to be worked on unless there is some additional motivation

4 http://behind-the-enemy-lines.blogspot.com/2010/07/mechanical-
turk-low-wages-and-market.html.

Behav Res

http://behind-the-enemy-lines.blogspot.com/2010/07/mechanical-turk-low-wages-and-market.html
http://behind-the-enemy-lines.blogspot.com/2010/07/mechanical-turk-low-wages-and-market.html

(e.g., benefiting a charity). In fact, previous work has
shown that offering subjects financial incentives increases
both the response and retention rates of online surveys,
relative to not offering any financial incentive (Frick,
Bächtiger, & Reips, 2001; Göritz, 2006).

Time to completion The second most often asked question
is how quickly work is completed. Of course, the answer to
the question depends greatly on many different factors: how
much the HIT pays, how long each HIT takes, how many
HITs are posted, how enjoyable the task is, the reputation of
the requester, and so forth. To illustrate the effect of one of
these variables, the wage of the HIT, we posted three
different six-question multiple-choice surveys. Each survey
was one HIT with 500 assignments. We posted the surveys
on different days so that we would not have two surveys on
the site at the same time. But we did post them on the same
day of the week (Friday) and at the same time of day
(12:45 p.m. EST). The $0.05 version was posted on August
13, 2010; the $0.03 version was posted on August 27,
2010; and the $0.01 version was posted on September 17,
2010. We held the time and day of week constant because,
as was mentioned earlier, both have shown to have
seasonality trends (Ipeirotis, 2010a). Figure 5 shows the
results of this experiment. The response rate for the $0.01
survey was much slower than those for the $0.03 and $0.05
versions, which had very similar response rates. While this
is not a completely controlled study and is just meant for
illustrative purposes, Buhrmester et al. (in press) and Huang
et al. (2010) found similar increases in completion time
with greater wages. Looking across these studies, one could
conclude that the relationship between wage and completion
time is positive but nonlinear.

Attrition Attrition is a bigger concern in online experiments
than in laboratory experiments. While it is possible for

subjects in the lab to simply walk out of an experiment, this
happens relatively rarely, presumably because of the social
pressure the subjects might feel to participate. In the online
setting, however, user attrition can come from a variety of
sources. A worker could simply open up a new browser
window and stop paying attention to the experiment at
hand, he or she could walk away from their computers in
the middle of an experiment, a user’s Web browser or entire
machine could crash, or his or her Internet connectivity
could cut out.

One technique for reducing attrition in online experi-
ments involves asking subjects how serious they are about
completing the experiment and dropping the data from
those whose seriousness is below a threshold (Musch &
Klauer, 2002). Other techniques involve putting anything
that might cause attrition, such as legal text and demo-
graphic questions, at the beginning of the experiment. Thus,
subjects are more likely to drop out during this phase than
during the data-gathering phase (see Reips, 2002, and
follow-up work by Göritz & Stieger, 2008). Reips (2002)
also suggested using the most basic and widely available
technology in an online experiment to avoid attrition due to
software incompatibility.

Conducting studies on Mechanical Turk

In the following sections, we show how to conduct research
on Mechanical Turk for three broad classes of studies.
Depending on the specifics of the study being conducted,
experiments on Mechanical Turk can fall anywhere on
the spectrum between laboratory experiments and field
experiments. We will see examples of experiments that
could have been done in the lab but were put on
Mechanical Turk. We will also see examples of what
amount to online field experiments. We outline the
general concepts that are unique to doing experiments
on Mechanical Turk throughout this section and elaborate
on the technical details in the Appendix.

Surveys

Surveys conducted on Mechanical Turk share the same
advantages and disadvantages as any online survey
(Andrews, Nonnecke, & Preece, 2003; Couper, 2000).
The issues surrounding online survey methodologies have
been studied extensively, including a special issue of Public
Opinion Quarterly devoted exclusively to the topic (Couper
& Miller, 2008). The biggest disadvantage to conducting
surveys online is that the population is not representative of
any geographic area or segment of population, and
Mechanical Turk is not even particularly representative of
the online population.

Days from HIT creation

P
er

ce
nt

 C
om

pl
et

ed

20

40

60

80

100

5 10 15 20

Wage
0.01

0.03

0.05

Fig. 5 Response rate for three different six-question multiple-choice
surveys conducted with different pay rates

Behav Res

Methods have been suggested for correcting these selection
biases in surveys generally (Berk, 1983; Heckman, 1979), and
the appropriate way to do this on Mechanical Turk is an open
question. Thus, as with any sample, whether it be online or
offline, researchers must decide for themselves whether the
subject pool on Mechanical Turk is appropriate for their work.

However, as a tool for conducting pilot surveys or for
surveys that do not depend on generalizability, Mechanical
Turk can be a convenient platform for constructing surveys
and collecting responses. As was mentioned in the
Introduction, relative to other methodologies, Mechanical
Turk is very fast and inexpensive. However, this benefit
comes with a cost: the need to validate the responses to
filter out bots and workers who are not attending to the
purpose of the survey. Fortunately, validating responses can
be managed in several relatively time- and cost-effective
ways, as outlined in the Quality assurance section.
Moreover, because workers on Mechanical Turk are
typically paid after completing the survey, they are more
likely to finish it once they start (Göritz, 2006).

Amazon provides a HIT template to aid in the construction of
surveys (Amazon also provides other templates, which we
discuss in the HIT templates section of the Appendix). Using a
template means that the HITwill run on an Amazon machine.
Amazon will store the data from the HIT, and the requester can
retrieve the data at any point in the HIT’s lifecycle. The HIT
template gives the requester a simple Web form where he or
she defines all the values for the various properties of the HIT,
such as the number of assignments, pay rate, title, and
description (see the Appendix for a description of all of the
parameters of an HIT). After specifying the properties for the
HIT, the requester then creates the HTML for the HIT. In the
HTML, the requester specifies the type of input and content for
each input type (e.g., survey question), and for multiple-choice
questions, the value for each choice. The results are given back
to the requester in a column-separated file (.csv). There is one
row for each worker and one column for each question, where
the worker’s response is in the corresponding cell. Requesters
are allowed to preview the modified template to ensure that
there are no problems with the layout.

Aside from standard HTML, HIT templates can also
include variables that can have different values for each
HIT, which Mechanical Turk fills in when a worker
previews the HIT. For example, suppose one did a simple
survey template that asked one question: What is your
favorite ${object}? Here, ${object} is a variable. When
designing the HIT, a requester could instantiate this variable
with a variety of values by uploading a .csv file with
${object} as the first column and all the values in the rows
below. For example, a requester could put in values of
color, restaurant, and song. If done this way, three HITs
would be created, one for each of these values. Each one of
these three HITs would have ${object} replaced with color,

restaurant, and song, respectively. Each of these HITs would
have the same number of assignments as specified in the
HIT template.

Another way to build a survey on Mechanical Turk is to
use an external HIT, which requires you to host the survey
on your own server or use an outside service. This has the
benefit of increased control over the content and aesthetics
of the survey, as well as allowing one to have multiple
pages in a survey and, generally, more control over the form
of the survey. This also means the data is secure because it
is never stored on Amazon’s servers. We will discuss
external HITs more in the next few sections.

It is also possible to integrate online survey tools such as
SurveyMonkey and Zoomerang with Mechanical Turk. One
may want to do this instead of simply creating the survey
within Mechanical Turk if one has already created a long
survey using one of these tools and would simply like to recruit
subjects throughMechanical Turk. To integrate with a premade
survey on another site, onewould create a HIT that provides the
worker with a unique identifier, a link to the survey, and a
submit button. In the survey, one would include a text field for
the worker to enter their unique identifier. One could also direct
the worker to the “dashboard” page (https://www.mturk.com/
mturk/dashboard) that includes their unique worker ID, and
have them use that as their identifier on the survey site. The
requester would then know to approve only the HITs that have
a survey with a matching unique identifier.

Random assignment

The cornerstone of most experimental designs is random
assignment of subjects to different conditions. The key to
random assignment on Mechanical Turk is ensuring that
every time the study is done, it is done by a new worker.
Although it is possible to have multiple accounts (see the
Workers section), it is against Amazon’s policy, so random
assignment to unique Worker IDs is a close approximation
to uniquely assigning individuals to conditions. Additionally,
tracking worker IP addresses and using browser cookies can
help ensure unique workers (Reips, 2000).

One way to do random assignment on Mechanical Turk
is to create external HITs, which allows one to host any
Web-based content within a frame on Amazon’s Mechanical
Turk. This means that any functionality one can have
with Web-based experiments—including setups based on
JavaScript, PHP, Adobe Flash, and so forth—can be done
on Mechanical Turk. There are three vital components to
random assignment with external HITs. First, the URL of
the landing page of the study must be included in the
parameters for the external HIT so Mechanical Turk will
know where the code for the experiment resides. Second,
the code for the experiment must capture three variables
passed to it from Amazon when a worker accepts the HIT:

Behav Res

https://www.mturk.com/mturk/dashboard
https://www.mturk.com/mturk/dashboard

the “HITId,” “WorkerId,” and “AssignmentId.” Finally,
the experiment must provide a “submit” button that
sends the Assignment ID (along with any other data)
back to Amazon (using the externalSubmit URL, as
described in the Appendix).

For a Web-based study that is being hosted on an
external server but delivered on Mechanical Turk, there are
a few ways to ensure that subjects are being assigned to
only one condition. The first way is to post a single HIT
with multiple assignments. In this way, Mechanical Turk
ensures that each assignment is completed by a different
worker: each worker will see only one HIT available.
Because every run through the study is done by a different
person, random assignment can be accomplished by
ensuring that the study chooses a condition randomly every
time a worker accepts a HIT.

While this method is relatively easy to accomplish, it can
run into problems. The first arises when one has to rerun an
experiment. There is no built-in way to ensure that a worker
who has already completed a HITwill not be able to return
the next time a HIT is posted and complete it again,
receiving a different condition assignment the second time
around. Partially, this can be dealt with by careful planning
and testing, but some experimental designs may need to be
repeated multiple times while ensuring that subjects are
receiving the same condition each time. A simple but more
expensive way to deal with repeat workers is to allow all
workers to complete the HIT multiple times and disregard
subsequent submissions. A more cost-effective way is to
store the mapping between a Worker ID (passed to the site
when the worker accepts the HIT) and that worker’s
assigned condition. If the study is built so that this mapping
is checked when a worker accepts the HIT, the experimenter
can be sure that each worker experiences only a single
condition. Another option is to simply refuse entry to
workers who have already done the experiment. In this
case, requesters must clearly indicate in the instructions that
workers will be allowed to do the experiment only once.

Mapping the Worker ID to the condition assignment does
not, of course, rule out the possibility that the workers will
discuss their condition assignments. As we discuss in the
Turker community section, workers are most likely to
communicate about the HITs on which they worked in the
online forums focused on Mechanical Turk. It is possible
that these conversations will include information about their
condition assignments, and there is no way to prevent
subjects from communicating. This can also be an issue
in general online experiments and in multisession
offline experiments. Mechanical Turk has the benefit
that these conversations on the forums can be monitored
by the experimenter.

When these methods are used, the preview page must be
designed to be consistent with all possible condition

assignments. For instance, Mason and Watts (2009)
randomized the pay the subjects received. Because the
wage offered per HIT is visible before the worker even
previews the HIT, the different wage conditions had to be
done through bonuses and could not be revealed until after
the subject had accepted the HIT.

Finally, for many studies, it is important to calculate and
report intent-to-treat effects. Imagine a laboratory study that
measures the effect of blaring noises on reading comprehension
that finds the counterintuitive result that the noises improve
comprehension. This result could be explained by the fact that
there was a higher dropout rate in the “noises” condition and the
remainder either had superior concentration or were deaf and,
therefore, unaffected. In the context of Mechanical Turk, one
should be sure to keep records of how many people accepted
and how many completed the HIT in each condition.

Synchronous experiments

Many experimental designs have the property that one
subject’s actions can affect the experience and, possibly, the
payment of another subject. Mechanical Turk was designed
for tasks that are asynchronous in nature, in which the work
can be split up and worked on in parallel. Thus, it is not a
priori clear how one could conduct these types of experi-
ments on Mechanical Turk. In this section, we describe one
way synchronous participation can be achieved: by building
a subject panel, notifying the panel of upcoming experi-
ments, providing a “waiting room” for queuing subjects,
and handling attrition during the experiment. The methods
discussed here have been used successfully by Suri and
Watts (2011) in over 100 experimental sessions, as well as
by Mao, Parkes, Procaccia, and Zhang (2011).

Building the panel An important part of running synchro-
nous experiments on Mechanical Turk is building a panel of
subjects to notify about upcoming experiments. We recom-
mend building the panel by either running several small,
preliminary experiments or running a different study on
Mechanical Turk and asking subjects whether they would
like to be notified of future studies. In these preliminary
experiments, the requester should require that all workers
who take part in the experiment be first-time players,
indicate this clearly in the instructions, and build it into the
design of the HIT. Since the default order in which workers
view HITs is by time of creation, with the newest HITs first, a
new HIT is seen by quite a few workers right after it has been
created (Chilton et al., 2010). Thus, we found requiring only 4
to 8 subjects works well, since this ensures that the first
worker to accept the HITwill not have to wait too long before
the last worker accepts this HIT and the session can begin.

At the end of the experiment, perhaps during an exit
survey, the requester can ask the workers whether they

Behav Res

would like to be notified of future runs of this or other
experiments. When subjects are asked whether they would
like to be notified of future studies, we recommend making
the default option to not be notified and asking the workers
to opt in. Since most tasks on Mechanical Turk are rather
tedious, even a moderately interesting experiment will have
a very high opt-in rate. For example, the opt-in rate was
85% for Suri and Watts (2011). In addition, since the
workers are required to be fresh (i.e., never having done the
experiment before), this method can be used to grow the
panel fairly rapidly. Figure 6 shows the growth of one panel
using this method, and we have seen even faster growth in
subsequent studies. It should be clear to the subjects joining
the panel whether they are being asked to do more studies
of the same type or studies of a different type from the same
requester. If they agree to the latter, the panels can be reused
from experiment to experiment. Göritz et al. (2008) showed
that paying individuals between trials of an experiment can
increase response and retention rates, although their results
were attenuated by the fact that their subjects had to take
the time to sign up for a PayPal account, which is
unnecessary on Mechanical Turk.

In our experience, small preliminary experiments have
a benefit beyond growing the panel: they serve to expose
bugs in the experimental system. Systems where users
concurrently interact can be difficult to test and debug,
since it can be challenging for a single person to get the
entire system in a state where the bug reveals itself.
Also, it is better for problems to reveal themselves with a

small number of workers in the experiment than with a
large number.

Notifying workers Now that we have shown how to
construct a panel, we next show how to take advantage of
it. Doing so involves a method that Mechanical Turk
provides for sending messages to workers. Before the
experiment is to run, a requester can use the NotifyWorkers
API call to send workers a message indicating the times at
which the next experiment(s) will be run (see the Appendix
for more details, including how to ensure that the e-mails
are delivered and properly formatted). We found that
sending a notification the evening before an experiment
was sufficient warning for most workers. We also found that
conducting experiments between 11 a.m. and 5 p.m. EST
resulted in the experiment filling quickly and proceeding
with relatively few dropouts. Also, if one wants to conduct
experiments with n subjects simultaneously, experience has
shown us that one needs a panel with 3n subjects in it.
Using this rule of thumb, we have managed to run as many
as 45 subjects simultaneously. If the panel has substantially
more than 3n subjects, many workers might get shut out of
the experiment, which can be frustrating to them. In this
case, one could either alter the experiment to allow more
subjects or sample 3n subjects from the panel.

Waiting room Since the experiment is synchronous, all of
the workers must begin the experiment at the same time.
However, there will inevitably be differences in the time
that workers accept the HIT. One way to resolve this issue
is to create an online “waiting room” for the workers. As
more workers accept the HIT, the waiting room will fill up
until the requisite number of workers have arrived and the
experiment can begin. We have found that indicating to the
workers how many people have joined and how many are
required provides valuable feedback on how much time
they can expect to wait. Once one instance of the
experiment has filled up and begun, the waiting room can
then either inform additional prospective workers that the
experiment is full and they should return the HIT or funnel
them into another instance of the experiment. The waiting
room and the message that the experiment is full are good
opportunities to recruit more subjects into the study and/or
advertise future runs of the experiment.

Attrition In the synchronous setting, it is of paramount
importance to have a time-out after which, if a subject has
not chosen an action, the system chooses one for him or her.
Including this time-out and automated action avoids having
an experiment stall, with all of the subjects waiting for a
missing subject to take an action. Because experiments on
Mechanical Turk are inexpensive, an experimenter can
simply throw out trials with too much attrition. Alterna-

Days from first entrant

P
an

el
 S

iz
e

20

40

60

80

100

120

140

0 50 100 150 200 250 300

Fig. 6 Rate of growth of panel from Suri and Watts (2011). Periods
without growth indicate times between experimental runs

Behav Res

tively, the experimenter can use the dropouts as an
opportunity to have a (dummy) confederate player act in a
prescribed way to observe the effect on the subjects. In the
work of Suri and Watts (2011), the authors discarded
experiments where fewer than 90% of the actions were
done by humans (as opposed to default actions chosen by
the experimental system). Out of 94 experiments run with
20–24 players, 21 had to be discarded using this criterion.

Quality assurance

The downside to fast and cheap data is the potential for low
quality. From the workers’ perspective, they will earn the
most money by finding the fastest and easiest way to
complete HITs. As was mentioned earlier, most workers are
not motivated primarily by the financial returns and
genuinely care about the quality of their work, but nearly
all of them also care, at least a little, about how efficiently
they are spending their time. However, there are a few
workers who do not care about the quality of the work they
put out as long as they earn money (they are typically
characterized as spammers). Moreover, there are reports of
programs (bots) designed to automatically complete HITs
(McCreadie et al., 2010), and these are essentially guaranteed
to provide bad data.

To ensure that the instructions for the HIT are clear,
requesters can add a text box to their HIT asking whether
any part of it was confusing. In addition, there has been a
significant amount of research put into methods for
improving and assuring data quality. The simplest and,
probably most commonly used method is obtaining
multiple responses. For many of the common tasks on
Mechanical Turk, this is a very effective and cost-efficient
strategy. For instance, Snow and colleagues compared
workers on Mechanical Turk with expert labelers for natural
language tasks and determined how many Mechanical Turk
worker responses were required to get expert-level accuracy
(Snow et al., 2008), which ranged from two to nine with a
simple majority rule and one or two with more sophisticated
learning algorithms. Sheng, Provost, and Ipeirotis (2008) used
labels acquired through Mechanical Turk as input to a
machine-learning classifier and showed over 12 data sets
that, using the “majority vote” label obtained from multiple
labels, improved classification accuracy in all cases. In
follow-up work, Ipeirotis, Provost, and Wang (2010)
developed an algorithm that factors both per-item classifica-
tion error and per-worker biases to reduce error with even
fewer workers and labels.

However, for most survey and experimental data, where
individual variability is an important part of the data
obtained, receiving multiple responses may not be an
option for determining “correct” responses. For surveys

and some experimental designs, one option is to include a
question designed to discourage spammers and bots,
something that requires human knowledge and the same
amount of effort as other questions in the survey but has a
verifiable answer that can be used to vet the submitted
work. Kittur, Chi, and Suh (2008) had Mechanical Turk
workers rate the quality of Wikipedia articles and compared
them with experts. They found a significant increase in the
quality of the data obtained when they included additional
questions that had verifiable answers: The proportion of
invalid responses went from 48.6% to 2.5%, and the
correlation of responses to expert ratings became statisti-
cally significant. If you include these “captcha” or “reverse
Turing test” questions, it is advisable to make it clear that
workers will not be paid if the answers to the verifiable
questions are not answered correctly. Also, if the questions
are very incongruent with the rest of the study, it should be
clear that they are included to verify the legitimacy of the
other answers. Two examples of such questions are “Who is
the president of the United States?” and “What is 2 + 2?”
We asked the former question as a captcha question in one
of the surveys described in Fig. 5. Out of 500 responses,
only six people got the question wrong, and three people
did not answer the question.

In some cases, it may be possible to have the workers
check their own work. If responses in a study do not have
correct answers but do have unreasonable answers, it may
be possible to use Mechanical Turk workers to vet the
responses of others’ work. For instance, if a response to a
study requires a free-text response, one could create another
HIT for the purpose of validating the response. It would be
a very fast and easy task for workers (and therefore,
inexpensive for requesters) to read these responses and
verify that they are a coherent and reasonable response to
the question asked. Little, Chilton, Goldman, and Miller
(2010) found that this sort of self-correction can be a very
efficient way of obtaining good data.

Finally, another effective way of filtering bad responses
is to look at the patterns of responses. Zhu and Carterette
(2010) looked at the pattern of responses on surveys and
found that low-quality responses had very low-entropy
patterns of response—always choosing one option (e.g., the
first response to every question) or alternating between a
small number of options in a regular pattern (e.g., switching
between the first and the last responses). The time spent
completing individual tasks can also be a quick and easy
means of identifying poor/low-effort responses—so much
so that filtering work by time spent is built into the
Mechanical Turk site for reviewing output. When Kittur et
al. (2008) included verifiable answers in their study, they
found that the time spent completing each survey went up
from 1.5 min to over 4 min. It is usually possible to
determine a lower bound on the amount of time required to

Behav Res

actually participate in the study and to filter responses that
fall below this threshold.

Security

As was stated above, the code for an external HIT typically
resides on the requester’s server. The code for the HIT is
susceptible to attacks from the general Internet population,
because it must be executable by any machine on the
Internet to work on Mechanical Turk. Here, we provide a
general overview of some security issues that could affect a
study being run as an external HITand ways to mitigate the
issues. In general, it is advisable to consult an expert in
computer security when hosting a public Web site.

To begin with, we advocate that requesters make an
automated nightly backup of the work submitted by the
workers. In order to ensure the integrity of the data
gathered, a variety of security precautions are necessary
for external HITs. Two of the most common attacks on
Web-based applications are database (most commonly
SQL) injection attacks and Cross Site Scripting (XSS)
attacks. A database injection attack can occur on any
system that uses a database to store user input and
experiment parameters, which is a common way to design
Web-based software. A database injection attack can occur
at any place where the code takes user input. There are a
variety of inputs that a malicious user could give that would
trick the database underlying the requester’s software to run
it. Such code could result in the database executing an
arbitrary command specified by the malicious user, and
some commands could compromise the data that have been
stored. Preventing this type of attack is a relatively
straightforward matter of scrubbing user input for database
commands—for instance, by removing characters recog-
nized by the database as a command. There are a variety
of software libraries in many programming languages
that will aid in this endeavor specific to the particular
implementation of the database and software that can be
found for free online.

Cross-site scripting attacks (XSS) are another type of
code injection attack. Here, a malicious user would try to
inject arbitrary scripting code, such as malicious Java-
Script code, into the input in an attempt to get the
requester’s server to run the code. Here again, one of the
main methods for preventing this type of attack is input
validation. For example, if the input must be a number, the
requester’s code should ensure that the only characters in
the input are numbers, a plus or minus sign, or a decimal
point. Another preventative measure is to “HTML escape”
the user input, which ensures that any code placed in the
input by a malicious user will not be executed. We caution
prospective requesters who use external HITs to take these
measures seriously.

Code security is not the only type of security
necessary for experiments on Mechanical Turk. The
protocol that the requester uses to run the experiment
must also be secure. We demonstrate this with an
example. The second author of this article attempted a
synchronous experiment that was made up of many HITs.
The first part of the HIT was to take a quiz to ensure
understanding of the experiment. If a worker passed the
quiz, he or she would enter the waiting room and then
eventually go into the experiment. Workers were paid
$0.50 for passing the quiz, along with a bonus, depend-
ing on their actions in the experiment. Two malicious
workers then accepted as many HITs as they could at one
time. Meanwhile, the benevolent workers accepted one
HIT each, passed the quiz, went into the waiting room,
and eventually began the experiment. After accepting as
many as possible, the malicious workers then filled out
the quiz correctly for each HIT, submitting them after the
experiment began. Thus, the malicious workers were
paid for their quizzes and were not allowed into the
experiment. The second author got bilked out of roughly
$200. The fix was simply to make the experiment one
HIT with many assignments, so that each Turker could
accept only one HIT at a time.

Ethics and privacy

As with any research involving human subjects, care must
be taken to ensure that subjects are treated in an ethical
manner and that the research follows standard guidelines
such as the Belmont Report (Ryan et al., 1979). While
oversight of human research is typically managed by the
funding or home institution of the researcher, it is the
researcher’s responsibility to ensure that appropriate steps
are taken to conduct ethical research.

Mechanical Turk and other crowdsourcing sites define a
relatively new ethical and legal territory, and therefore the
policies surrounding them are open to debate. Felstiner
(2010) reviews many of the legal grounds and ethical issues
related to crowdsourcing and is an excellent starting point
for the discussion. There are also many ethical issues that
apply to online experimentation in general. While this has
been covered extensively elsewhere (Barchard & Williams,
2008), we felt that it would be helpful to the reader to
highlight them here. In the following section, we touch on
issues relevant to Institutional Review Boards (IRBs) when
proposing research on Mechanical Turk.

Informed consent

Informed consent of subjects is nearly always a requirement
for human subject research. One way to obtain consent on

Behav Res

Mechanical Turk is to have a statement on the preview page
of the HIT that explains the purpose of the study, the risks
and benefits of the research (to the extent that they can be
explained), and a means by which the subjects can contact
the researcher (and/or the human subjects review board)
about problems they may experience in the course of
participating in the study. This way, the potential subjects
have all of the information they need to make an informed
decision about whether they want to participate before
accepting the HIT. Alternatively, the initial preview page
can be thought of as the “call for participation,” and the
informed consent statement can be provided after they have
accepted the HIT, followed by an option to continue or
return the HIT. Which method one employs likely depends
on the constraints of the research and the human subjects
review board.

Debriefing

Similarly, it is important to ensure that at the end of
participation, the workers understand the purpose of the
experiment and are reminded how to contact the researcher
in the event of questions or complaints. Providing a
debriefing statement is even more important if there is
any deception or undisclosed information in the study. For
these cases especially, we suggest presenting the debriefing
statement after the participation is completed but before the
submit button is made available to the workers, to ensure
that they see it before they can be paid.

Additionally, there is nothing built into Mechanical Turk
that prevents researchers from using deception. Some
researchers may wish to avoid having their subject pool
“contaminated” with subjects who have gone through an
experiment that uses deception. To mitigate this issue, a
researcher could create his or her own panel of workers
and guarantee to them that they will never be deceived
by that researcher’s experiment. This would help foster a
norm of trust between the researcher and the subjects in
his or her panel.

Restricted populations

Another issue that must be considered is the possibility of
minors or other restricted populations participating in the
experiment. Although reported demographics of workers
under 18 years of age are very low, there are no guarantees
that the workers will be adults, and therefore, precautions
must be taken to validate the age of the workers.
Unfortunately, there are no built-in means of checking
the age of the workers or whether they fall into any other
restricted population, such as convicted felons or men-
tally disabled individuals. The best we can suggest, as
with any online research, is to have an initial screening

with voluntarily provided information that prevents
restricted populations from participating (Barchard &
Williams, 2008).

Compensation

One frequently heard complaint about the ethics of using
Mechanical Turk centers around the low wages the workers
receive. Legally, the workers on Mechanical Turk are
considered “independent contractors” and, therefore, fall
outside the minimum wage laws; there is an established
contract between the requester and worker to do the work at
the agreed wage independent of the time required to do the
task. In the United States, requesters are required to provide
an IRS Form 1099 if any single worker earns over the IRS
tax reporting threshold (currently $6005), and workers are
required to report their income to the IRS if they earn more
than the IRS threshold. Because of the low wages on
Mechanical Turk, however, this rarely happens.

Although some issues remain (such as the enforcement
of Amazon’s stated policies), there are some reasonable
arguments for the low wages on Mechanical Turk. From the
employer’s perspective, some have argued6 that because
Mechanical Turk is effectively a “market for lemons”
(Akerlof, 1970), the equilibrium wage is lower than if the
requesters could more easily check the quality of work
before compensating the workers. From the worker’s
perspective, as was mentioned earlier, most workers are
not relying on the wages earned on Mechanical Turk for
necessities. More important, the working conditions and
hours are wholly determined by the worker. There is
absolutely no direct or indirect obligation or constraint on
the workers to do any work on Mechanical Turk. In other
words, the decision to engage in the contract is completely
at the worker’s liberty, a situation that rarely, if ever, exists
in other employment situations.

Confidentiality

Short of falsifying the information submitted during the
requester sign-up period, it is not possible for a requester to
remain anonymous on Mechanical Turk. That being said, it
is possible for a requester to use the name of an institution
or company or to provide a fake name, although these uses
are discouraged or disallowed because it makes it harder for
the workers to track the reputation of the requester. In
contrast, it is the norm for workers to remain anonymous on
Mechanical Turk. Worker IDs are anonymized strings and
do not contain personally identifiable information. Howev-

6 http://behind-the-enemy-lines.blogspot.com/2010/07/mechanical-
turk-low-wages-and-market.html.

5 http://www.irs.gov/instructions/i1099msc/ar02.html.

Behav Res

http://behind-the-enemy-lines.blogspot.com/2010/07/mechanical-turk-low-wages-and-market.html
http://behind-the-enemy-lines.blogspot.com/2010/07/mechanical-turk-low-wages-and-market.html
http://www.irs.gov/instructions/i1099msc/ar02.html

er, if a requester were to send a note to a worker using the
NotifyWorkers API call and the worker were to reply, the
reply would go from the worker’s e-mail address to the
requester’s. The e-mail address of the worker would
therefore be revealed to the requester.

There are also privacy issues concerning where the data
gathered on Mechanical Turk are stored. On a template HIT,
Amazon has access to the data, and although they state that
they will not look at the data, it may still be a concern for
experiments or behavioral research that gather personally
sensitive data. For example, suppose that a requester did a
survey asking whether a worker has a sexually transmitted
disease. If this were done using an internal HIT, Amazon
would have a list of Worker IDs, along with their account
information and their answer to the survey. One advantage
of the external HIT, therefore, is that the data go straight
from the worker to the external server managed by the
requester, so the data are never available to Amazon. In
addition, a requester can use the https protocol to ensure
that the data that are transferred between a worker’s
browser and the requester’s server running an external
HIT are encrypted (Schmidt, 2007).

Turker community

A rich online community has sprung up around Mechanical
Turk, much of which focuses on the reputation of
requesters. There is an asymmetry in the reputations of
workers and requesters on Mechanical Turk. Requesters can
reject (i.e., refuse to pay for) any or all work done by a
worker without giving a reason. Moreover, any requester
can choose to refuse workers whose percentage of work
rejected is higher than some threshold. These features make
the reputation of workers, which is encoded by their
acceptance rate, a fundamental feature of Mechanical Turk.
However, there is no systematic reputation mechanism
for requesters. As a result, off-site reputation systems
have been developed, including Turkopticon7 and Turker
Nation.8 Turkopticon is a site that allows workers to rate
requesters along four axes: communicativity, generosity,
fairness, and promptness. Turker Nation is an online
bulletin board where workers routinely comment on
requesters and communicate about individual HITs. It is
strongly encouraged that new requesters “introduce” them-
selves to the Mechanical Turk community by first posting
to Turker Nation before putting up HITs. These external
sites can have a strong effect on the acceptance rate of HITs
and therefore serve effectively as a watchdog on abusive
requesters. Moreover, the forums allow one to monitor

workers’ reactions to the study, which at times can provide
insight into one’s methods or even the substantive focus of
the research itself.

There are many instances where requesters could find
themselves interacting directly with workers. The Mechanical
Turk interface allows workers to send the requester of a HITa
message. For instance, workers maywish to contact requesters
if part of their HIT is unclear or confusing. Similarly, workers
may post comments on Turker Nation regarding either
positive or negative aspects of a HIT. We advocate that
requesters keep a professional rapport with their workers as if
they were company employees. This will benefit the requester
by maintaining a high reputation among workers, leading
more workers to do their HITs in the future.

Finally, we note that there are a number of blogs where
researchers who either conduct experiments usingMechanical
Turk or study Mechanical Turk itself often post. These
sites—“A Computer Scientist in a Business School,”9

“Experimental Turk,”10 “Deneme,”11 and “Crowdflower”12—
are useful for researchers interested in keeping up on the
latest Mechanical Turk research.

Conclusion

In this article, we have described a tool for behavioral
researchers to conduct online studies: Amazon’s Mechani-
cal Turk. This crowdsourcing platform provides researchers
with access to a massive subject pool available 365 days a
year, freeing academic scientists from the boom-and-bust
semester cycle. The workers on Mechanical Turk generally
come from a more diverse background than the typical
college undergraduate, and in numbers that equal or exceed
the size of even large universities’ subject pools. Further-
more, since the reservation wage of workers is only $1.38
per hour (Chilton et al., 2010) (with an effective wage of
roughly $4.80; Ipeirotis, 2010a), the subjects tend to be
less comparable to or expensive than subjects recruited
through other means. There have also been a number of
studies that validate the behavior of workers, as compared
with offline behavior.

In an overview of the basics of Mechanical Turk, we
described the two roles on the site, requesters and workers,
and the jobs they perform, called human intelligence tasks.
We then explained how to conduct three types of studies on
Mechanical Turk: surveys, standard random assignment
experiments, and synchronous experiments.

We hope that this guide opens doors for behavioral
research of all kinds, from traditional laboratory studies, to

7 http://turkopticon.com.
8 http://www.turkernation.com.

9 http://behind-the-enemy-lines.blogspot.com.
10 http://experimentalturk.wordpress.com.
11 http://groups.csail.mit.edu/uid/deneme.
12 http://blog.crowdflower.com.

Behav Res

http://turkopticon.com
http://www.turkernation.com
http://behind-the-enemy-lines.blogspot.com
http://experimentalturk.wordpress.com
http://groups.csail.mit.edu/uid/deneme
http://blog.crowdflower.com

field experiments, to novel research on the crowdsourcing
platform itself.

Author Note Both authors contributed equally to this work. We
would like to thank Duncan J. Watts and Daniel G. Goldstein for
encouraging us to write this article and the many people who provided
helpful feedback on earlier drafts.

Appendix

In this appendix, we describe the technical details involved
in engineering HITs on Mechanical Turk, to provide
guidance to the researchers actually building the studies
on Mechanical Turk beyond what is available on the
Mechanical Turk site and specifically directed toward
behavioral researchers.

HIT parameters

In order to create a HIT, the requester must specify the
following parameters:

Wage This is the amount the worker will receive for each
completed and approved assignment.

Title This is text that briefly describes the task.

Description This is longer text that provides more information
about the HIT.

Keywords These are some comma-separated words that
workers can use to search for the HIT.

Access Key, Secret Key These are the digital keys that
identify the requester. They were provided when the
requester account was created.

Assignment duration This is the allotted amount of time the
worker has to complete the HIT after accepting it.
Anecdotal reports suggest that workers use the amount of
time allotted for the assignment to gauge whether this is a
relatively long or short HIT, as compared with the other
HITs available.

Lifetime This is the maximum amount of time the HITwill
be available for workers to accept after it is posted on
Mechanical Turk by the requester if all of the HITs are not
first completed.

Question field The Question field is an XML string. For
internal HITs, it specifies the content of the HTML form.
For external HITs, it specifies the URL for the content of
the HIT and the height of the frame in pixels to display the

HIT. For applications that require the entire frame to be in
view, we recommend a maximum frame height of 600
pixels.13

Qualifications These are the requirements the worker must
have to work on the HIT. Multiple Qualifications can be
required for a single HIT.

Max assignments This is the number of assignments for
each HIT.

Auto approval delay This is the amount of time after an
Assignment is submitted before Amazon automatically
approves the work and pays the worker.

Requester annotation These are notes the requester can
provide when making an API call. For instance, one could
tag a HIT with an arbitrary string that could be used for
tracking purposes.

HIT types All HITs with the same title, description,
keywords, reward, assignment duration, auto-approval
delay, and qualifications will automatically be assigned to
the same HIT Type ID, or requesters can manually create a
HIT Type by specifying those parameters. Requesters can
also use a HIT Type to create HITs, so that the new HITs
automatically inherit the parameters defined by the HIT
Type. HITs with the same HIT Type ID are assigned the
same URL, which makes it easier for requesters to direct
workers to their HIT. Organizing similar HITs under the
same HIT Type also signals to workers that the tasks are
similar, attracting workers who are already familiar with
the task.

Sandbox

Mechanical Turk provides a “sandbox” (http://requester
sandbox.mturk.com) that requesters can use to design,
build, and fine tune their HITs before making them “live”
and available to the workers by putting the HIT on the
production site. The sandbox allows extensive testing of the
entire Mechanical Turk process before actually launching
the final product. The process of building the HIT on the
sandbox and production sites is identical, and once the HIT
is completed on the sandbox, it is trivial to move it over to
production. If using templates, the code can simply be
copied and pasted into a HIT template existing on the
production site. If using the command-line tools or the API,
it simply requires modifying a line in a configuration file to

13 See http://www.w3schools.com/browsers/browsers/browsers_display.
asp for the distribution of screen sizes on the Web.

Behav Res

http://requestersandbox.mturk.com
http://requestersandbox.mturk.com
http://www.w3schools.com/browsers/browsers/browsers_display.asp
http://www.w3schools.com/browsers/browsers/browsers_display.asp

shift the code to the production site (e.g., from “http://
requestersandbox.mturk.com” to “http://www.mturk.com”).
Once requesters have gained some experience with building
HITs theymay wish to put their HITs directly on the production
site, but we encourage new requesters to use the sandboxes.

HIT templates

Perhaps the easiest method for creating a HIT is to use the HIT
templates that Mechanical Turk provides. Any HIT that is a
single-page HTML form can be constructed using one of these
templates. In this section, we describe the workflow for
designing, testing, debugging, and launching such a HIT.

Amazon provides 13 different templates that give basic
HTML layouts for many common tasks on Mechanical
Turk, such as image labeling, data correction, and search
relevance. The requesters can then modify these basic
templates to suit their needs. For example, one template
gives the outline of a simple survey, which we will use as a
running example throughout this section. Another useful
template is the blank template into which any HTML code
can be inserted.

Before writing the actual survey questions and answers,
Mechanical Turk provides a simple Web form where the
experimenter can define all the values for the various
properties of the HIT described in the HIT parameters
section. After specifying the properties for the HIT, the
requester then provides Mechanical Turk the HTML
specifying the content of the HIT, which can be done with
the rudimentary HTML editor provided by Amazon.
Requesters are shown a preview of the template to ensure
that there are no bugs in the layout.

As discussed in the section on surveys, Mechanical Turk
also allows requesters to specify variables in their HTML
code. Variables provide an easy way to generate a
variety of HITs that all have the same general format
but differ in the values of the variables. For example
if one offered a HIT that asked people which of two
images they preferred, the HIT might have two
variables, ${pic1}$ and ${pic2}$. Then, in a separate
.csv file, there would be one column corresponding to
the URLs for the image to be shown as ${pic1}$ and
one column for the URLs to be shown as ${pic2}$.
There would be as many HITs as there are pairs of
pictures. The rest of the properties of the HIT, such as
pay rate, number of assignments, and so forth, would
be the same as those specified in the template.

After requesters are satisfied with the state of their HIT,
they can publish their HIT. If the HIT was created on
requestersandbox.mturk.com, the HIT can be worked on at
workersandbox.mturk.com. This is useful for debugging in
a number of ways. First, requesters can provide the URL
for the HIT to colleagues to get feedback on the clarity of

the questions and answers. Second, once colleagues have
done the HIT, requesters can download the results file to
ensure that the questions and answers are encoded properly
by their HTML. A good practice for testing multiple choice
answers is to ensure that all possible answers have been
given in test runs and ensure that they are encoded properly
in the data output.

After testing the HIT on the sandbox, the requester can
copy and paste the HTML form from the sandbox site to
the production site. Whether or not the HIT was placed on
the sandbox or on the production site, Mechanical Turk
provides the requester with the ability to download all the
results delivered up to that point in time. Also, the requester
can choose to extend the amount of time the HIT will
appear on Mechanical Turk, expire the HIT early, or add
more assignments to the HIT.

After the HIT is launched, workers will accept the HIT
and submit their work. As they do so, the results become
available for the requester to review. When the HIT is made
via a template, Mechanical Turk provides the requester with
a simple Web form that shows the results of the workers,
along with a check box indicating whether to accept or
reject the work.

One way to view the results is through the Mechanical
Turk site, which presents the results in a spreadsheet-like
format. This way of viewing them allows one to filter by
various features, such as how quickly the HIT was
completed, and select groups of results to approve or reject.
Additionally, the data can be returned in a column-separated
format (.csv). This file contains the HIT ID, Assignment
ID, and Worker ID for each assignment completed, as
well as the properties of the HIT as specified by the
requester and the worker’s answers to each question in
separate columns. Furthermore, the date and time the
worker accepted and submitted the HIT and difference
between the two—the number of seconds the worker
worked on the HIT—are also returned. If the amount of
time the worker spent on the HIT is shorter than could
possibly be achieved by a human, the requester may wish
to reject this work.

Command-line tools The most basic tools for creating and
managing HITs on your own computer (rather than a
Web-based interface) are the command-line tools (CLTs)
offered by Amazon’s Mechanical Turk, which can be
found at http://developer.amazonweb services.com/
connect/entry.jspa?externalID=694 and are available for
Windows and Unix operating systems (including Mac OS
X and Linux). The CLTs allow one to interact with the
Mechanical Turk APIs with simple text files and text-
based commands, providing a wrapper to the Java API
interface that does not require an understanding of Java
or the API.

Behav Res

http://requestersandbox.mturk.com
http://requestersandbox.mturk.com
http://www.mturk.com
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=694
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=694

The command line tools are a set of scripts that, when
executed on the command line, interact with the Amazon
API using existing files to populate the parameters for
the commands executed. All of these scripts are located
in the “bin” folder—as is the most important input file:
mturk.properties. All of the CLTs look in this file to find
the requester’s Access Key and Secret Key necessary for
signing the API calls (assigned when the requester
account is created; see the Requesters section). The file
also has the URL for the API, which can be changed to
create the HITs on the requester Sandbox or the production
Mechanical Turk site.

The majority of users of the CLTs will prefer to work
off the examples. There is an example for every type of
HIT available in the templates, as well as the external
HIT, which populates the HIT with content from an
external server. Each example folder contains all of the
necessary files to create and load HITs of that type.
Every one of these examples uses three key files:
yourtask.properties, yourtask.question, and yourtask.input.
It is important that the prefix yourtask is the same across
all three files, but otherwise any valid file name can be used.

The first file, yourtask.properties, describes the parameters
of the HIT (described in the HIT parameters section). The
file is a standard form with variables for each of the
parameters that can be freely modified. The second file,
yourtask.question, is an XML-formatted file that defines
what kind of HIT you want to create and what you want to
put in it. The structure of this XML file depends on the type
of HIT being created, which is why it is useful to work off
the example file in the corresponding folder. The third file,
yourtask.input, lets you set variables to be used in your HIT,
which are used in the same way as in the templates.

Also in each folder are the scripts necessary to load the
HITs onto Mechanical Turk, review the results, and approve
and delete the HIT. The script to load the HITs is called run.
sh or run.cmd (depending on whether you are using the
Unix or the Windows CLTs) but needs to be modified before
being executed. The key part of the file is the line that calls
the loadHITs script, which looks for the three key input
files. It is important that these files are correctly described
and that the “label” flag is also yourtask, the same prefix as
the input files. The two output files created by the scripts
will use this label in the filename, and they are necessary
for reviewing and approving the HITs.

After modifying the mturk.properties file, the run script,
and the input files, the script is nearly ready to be executed
to generate the HITs. All of the scripts depend on two
environmental variables: MTURK_CMD_HOME, which is
the path to the folder containing the scripts and the Java
programs, and JAVA_HOME, which is the path to Java
on the machine. Once these are appropriately set, run can
be called.

This will post the HITs on Mechanical Turk and create a
file, yourtask.success, that indicates that the HIT has been
successfully created and stores a list of the HIT IDs that were
created by the script. This file is the only place these HIT
IDs are stored (other than Amazon’s servers) and, therefore,
are your only key to reviewing, approving, and deleting the
HITs using the CLTs. It is good practice to create a backup of
yourtask.success described by the creation date. When run is
executed again, yourtask.success is overwritten, and any
HITs not yet managed are now accessible only through the
Web interface and can be managed only one at a time, which
is extremely inconvenient if you created many HITs.

To download the results obtained from the Turkers, the
getResults script must be called. As with run, the names of
the files being called must be modified to yourtask, the
prefix of the input and success files. Once called, the script
generates a file called yourtask.results. This file contains
the complete information about every submitted assignment
from the HITs listed in yourtask.success, including the
Worker ID, Assignment ID, and any fields included in the
form submitted by the worker.

The results file, yourtask.results, is a column-separated file
just like the results file you can download with the template
HITs, making it easily accessible with spreadsheet programs.
Additionally, if you are using the CLTs to create HITs in one
of the “template” formats, you can run the generateResults-
Summary script, which will analyze the results and create a
tab-delimited file called yourtask.summary. This file will
contain the majority answer for each question, the
percentage of workers who selected this answer, and
how many workers selected the answer out of the
number who worked on the HIT.

The yourtask.results file also includes a column labeled
“reject.” If you are manually reviewing the workers’
submissions, you would enter something in this column to
indicate that assignment is to be rejected. This field is blank
by default, meaning that all submitted work will be
accepted unless this field is changed.

Once you have reviewed the work in yourtask.results,
you must execute the script reviewResults. This rejects the
assignments that have something in the “reject” field and
approves the rest, thereby paying those workers from your
account (as well as the 10% fee to Amazon). An alternative
way of reviewing work is to split into separate files
containing only the accepted or rejected assignments, and
separately call approveWork and rejectWork (in the “bin”
folder) with the flag “-approvefile” or “-rejectfile” for each.

Finally, once you are finished collecting data and reviewing
the work, you can run the approveAndDeleteResults script.
This will delete the HITs listed in the yourtask.success file and
automatically approve any submitted assignments not yet
reviewed. Both reviewResults and approveAndDeleteResults
can be run multiple times (if, for instance, additional work is

Behav Res

completed after running the files) as long as the yourtask.
success file exists. Running reviewResults a second time will
print errors for assignments already reviewed but will
otherwise ignore them and continue to work correctly for
unreviewed assignments.

Programming interfaces

The most general and powerful way to interact with Mechan-
ical Turk is programmatically through their APIs. Using the
APIs, one can create HITs, create qualifications, approve and
reject assignments, grant bonuses, send messages to the
workers, and block or unblock specific workers from accepting
your HITs. For an overview of theAPI and the general concepts
involved, see http://docs.amazonwebservices.com/AWSMech
Turk/latest/AWSMechanicalTurkRequester/. For the list of
functions in the API, their descriptions, their inputs and their
outputs see http://docs.amazonwebservices.com/AWSMturk
API/2008-08-02/. In this section, we will describe the six
basic operations (five of which are explicitly part of the API)
necessary to create a HIT and pay the workers.14

All of the API calls have a few fields in common. For
example they all have a field called Service which is set to
“AWSMechanicalTurkRequester” which specifies which of
the Amazon APIs this request is a part of. In addition, there
is a field called Operation that specifies what method of the
API is to be executed.

Each API call also requires the system time of the
machine making the API call. The next two fields are
designed to authenticate each API call to a specific
requester. Each call requires the requester to pass in the
AWS Access Key that was assigned when the requester
registered for the account (described in the Requesters
section). Furthermore, each call must be signed by
computing a hash of the Service, Operation, and time fields
with their AWS Secret Key. Since this is considered a
secret, unique to each requester, it ensures that no one can
falsely pose as a requester.

CreateHIT This function is a programmatic way of
setting all the parameters of a HIT described in the
HIT parameters section. When a HIT is created success-
fully, Amazon returns two identifiers. The first is the HIT
ID. This can be used in other API calls to extend the life of
the HIT, expire the HIT early, disable the HIT, as well as
other possible operations on a HIT. The second identifier
that is returned is the HIT Type ID (see the HIT
parameters section).

SubmitAssignment Submitting an assignment is not techni-
cally part of the API, but when a worker finishes a task, this
method must be invoked to let Mechanical Turk know that
the assignment has been completed. Executing this method
amounts to submitting an HTML form to the URL http://
www.mturk.com/mturk/externalSubmit with the Assign-
ment ID as a hidden POST variable. Alternatively, one
can either use a GET variable or simply redirect the
worker to a URL of the form http://www.mturk.com/
mturk/externalSubmit/assignmentId=XXX&foo=bar. The
perhaps unexpected “foo = bar” is there as a workaround
to a bug in the Mechanical Turk API. Without some key–
value pair in its place, the assignment will not be
submitted.

ApproveAssignment, RejectAssignment The only required
field in these API calls is the Assignment ID. An optional
field is a string that is a message from the requester to the
worker that provides some feedback for this assignment.
When ApproveAssignment is executed, the money for
the HIT will be transferred from the requester’s account
to the worker’s account. Also, the 10% surcharge will be
transferred to Amazon. When RejectAssignment is
called, the assignment will be rejected, and no money
will change hands.

GrantBonus This call takes as input the Worker ID,
Assignment ID, Bonus Amount (in U.S. dollars), and a
Reason. This command results in the bonus amount being
transferred from the requester’s account to the worker’s
account. This command can be executed only on assign-
ments that have been submitted and approved.

NotifyWorkers This call can take a list of up to 100 Workers
IDs, a subject line, and a message. The message (input to
the method as a string) will be sent from the Amazon
system to the e-mail address associated with each worker
account with the specified subject line. If delivering this
message to any one of the workers returns an error, the
command returns an error, even if the rest of the notifications
went through. Thus, we advocate that requesters put the
Worker ID of an account they own in each batch of
Worker IDs to ensure that the messages go through and
were properly formatted.

References

Akerlof, G. A. (1970). The market for “lemons”: Qualitative
uncertainty and the market mechanism. Quarterly Journal of
Economics, 84, 488–500.

Alonso, O., & Mizzaro, S. (2009). Can we get rid of TREC assessors?
Using Mechanical Turk for relevance assessment. In S. Geva, J.

14 There are two main protocols by which one can make calls to the
Mechanical Turk API, SOAP, and REST. While both protocols have
their advantages and disadvantages, in this section we focus on
making API calls using REST due to its simplicity.

Behav Res

http://docs.amazonwebservices.com/AWSMechTurk/latest/AWSMechanicalTurkRequester/
http://docs.amazonwebservices.com/AWSMechTurk/latest/AWSMechanicalTurkRequester/
http://docs.amazonwebservices.com/AWSMturkAPI/2008-08-02/
http://docs.amazonwebservices.com/AWSMturkAPI/2008-08-02/
http://www.mturk.com/mturk/externalSubmit
http://www.mturk.com/mturk/externalSubmit
http://www.mturk.com/mturk/externalSubmit/assignmentId=XXX&foo=bar
http://www.mturk.com/mturk/externalSubmit/assignmentId=XXX&foo=bar

Kamps, C. Peters, T. Saka, A. Trotman, & E. Voorhees (Eds.),
Proceedings of the SIGIR 2009 Workshop on the Future of IR
Evaluation (pp. 15–16). Amsterdam: IR Publications.

Andrews, D., Nonnecke, B., & Preece, J. (2003). Electronic survey
methodology: A case study in reaching hard-to-involve Internet
users. International Journal of Human–Computer Interaction,
16, 185–210.

Barchard, K. A., & Williams, J. (2008). Practical advice for
conducting ethical online experiments and questionnaires for
United States psychologists. Behavior Research Methods, 40,
1111–1128.

Baron, J., & Hershey, J. (1988). Outcome bias in decision evaluation.
Journal of Personality and Social Psychology, 54, 569–579.

Berk, R. A. (1983). An introduction to sample selection bias in
sociological data. American Sociological Review, 48, 386–398.

Birnbaum, M. H. (Ed.). (2000). Psychological experiments on the
Internet. San Diego, CA: Academic Press.

Birnbaum, M. H. (2004). Human research and data collection via the
Internet. Annual Review of Psychology, 55, 803–832.

Buhrmester, M. D., Kwang, T., & Gosling, S. D. (in press). Amazon’s
Mechanical Turk: A new source of inexpensive, yet high-quality,
data? Perspectives on Psychological Science.

Camerer, C. F., & Hogarth, R. M. (1999). The effects of financial
incentives in experiments: A review and capital-labor-production
framework. Journal of Risk and Uncertainty, 19, 7–42.

Centola, D. (2010). The spread of behavior in an online social network
experiment. Science, 329, 1194.

Chilton, L. B., Horton, J. J., Miller, R. C., & Azenkot, S. (2010). Task
search in a human computation market. In Proceedings of the
ACM SIGKDD Workshop on Human Computation (pp. 1–9).
New York: ACM.

Cooper, R., DeJong, D. V., Forsythe, R., & Ross, T. W. (1996).
Cooperation without reputation: Experimental evidence from
prisoner’s dilemma games. Games and Economic Behavior, 12,
187–218.

Couper, M. P. (2000). Web surveys: A review of issues and
approaches. Public Opinion Quarterly, 64, 464–494.

Couper, M. P., & Miller, P. V. (2008). Web survey methods. Public
Opinion Quarterly, 72, 831.

Dixon, W. J. (1953). Processing data for outliers. Biometrics, 9, 74–89.
Eriksson, K., & Simpson, B. (2010). Emotional reactions to losing

explain gender differences in entering a risky lottery. Judgment
and Decision Making, 5, 159–163.

Fehr, E., & Gachter, S. (2000). Cooperation and punishment in public
goods experiments. American Economic Review, 90, 980–994.

Felstiner, A. L. (2010). Working the crowd: Employment and labor law
in the crowdsourcing industry. Retrieved from http://works.
bepress.com/alek_felstiner/1/

Frick, A., Bächtiger, M.-T., & Reips, U.-D. (2001). Financial
incentives, personal information, and drop out in online studies.
In U.-D. Reips & M. Bosnjak (Eds.), Dimensions of Internet
science (pp. 209–219). Lengerich: Pabst Science.

Göritz, A. S. (2006). Incentives in Web studies: Methodological issues
and a review. International Journal of Internet Science, 1, 58–70.

Göritz, A. S. (2008). The long-term effect of material incentives on
participation in online panels. Field Methods, 20, 211–225.

Göritz, A. S., & Stieger, S. (2008). The high-hurdle technique put to
the test: Failure to find evidence that increasing loading times
enhances data quality in Web-based studies. Behavior Research
Methods, 40, 322–327.

Göritz, A. S., Wolff, H. G., & Goldstein, D. G. (2008). Individual
payments as a longer-term incentive in online panels. Behavior
Research Methods, 40, 1144–1149.

Gosling, S. D., & Johnson, J. A. (Eds.). (2010). Advanced methods for
conducting online behavioral research. Washington, DC: American
Psychological Association.

Heckman, J. J. (1979). Sample selection bias as a specification error.
Econometrica, 47, 153–161.

Horton, J. J., Rand, D. G., & Zeckhauser, R. J. (in press). The online
laboratory. Experimental Economics.

Hossain, T., & Morgan, J. (2006). Plus shipping and handling:
Revenue (non)equivalence in field experiments on eBay. Advan-
ces in Economic Analysis & Policy, 6, 3.

Howe, J. (2006). The rise of crowdsourcing. Wired Magazine, 14, 1–4.
Huang, E., Zhang, H., Parkes, D. C., Gajos, K. Z., & Chen, Y.

(2010). Toward automatic task design: A progress report. In
Proceedings of the ACM SIGKDD Workshop on Human
Computation (pp. 77–85). New York: ACM.

Ipeirotis, P. G. (2010a). Analyzing the Amazon Mechanical Turk
marketplace. ACM XRDS, 17, 16–21.

Ipeirotis, P. G. (2010b). Demographics of Mechanical Turk (Tech. Rep.
No. CeDER-10-01). New York: New York University. Retrieved
from http://hdl.handle.net/2451/29585. March.

Ipeirotis, P. G., Provost, F., & Wang, J. (2010). Quality management on
Amazon Mechanical Turk. In Proceedings of the ACM SIGKDD
Workshop on Human Computation (pp. 64–67). New York:
ACM.

Kittur, A., Chi, E. H., & Suh, B. (2008). Crowdsourcing user studies with
Mechanical Turk. In M. Czerwinski & A. Lund (Eds.), Proceeding
of the Twenty-Sixth Annual SIGCHI Conference on Human Factors
in Computing Systems (pp. 453–456). New York: ACM.

Kraut, R., Olson, J., Banaji, M., Bruckman, A., Cohen, J., & Couper,
M. (2004). Psychological research online: Opportunities and
challenges. American Psychologist, 59, 105–117.

Little, G., Chilton, L. B., Goldman, M., & Miller, R. C. (2010).
Exploring iterative and parallel human computation processes.
In Proceedings of the ACM SIGKDD Workshop on Human
Computation (pp. 68–76). New York: ACM.

Mao, A., Parkes, D. C., Procaccia, A. D., & Zhang, H. (2011). Human
computation and multiagent systems: An algorithmic perspective.
In Proceedings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence. San Francisco.

Marge, M. , Banerjee, S., & Rudnicky, A. I. (2010). Using the
Amazon Mechanical Turk for transcription of spoken language.
In J. Hansen (Ed.), Proceedings of the 2010 IEEE Conference on
Acoustics, Speech and Signal Processing (pp. 5270–5273). IEEE.

Mason, W. A., & Watts, D. J. (2009). Financial incentives and the
performance of crowds. In Proceedings of the ACM SIGKDD
Workshop on Human Computation (pp. 77–85). New York:
ACM.

McCreadie, R. M. C., Macdonald, C., & Ounis, I. (2010). Crowd-
sourcing a news query classification dataset. In M. Lease, V.
Carvalho, & E. Yilmaz (Eds.), Proceedings of the ACM SIGIR
2010 Workshop on Crowdsourcing for Search Evaluation (CSE
2010) (pp. 31–38). Geneva, Switzerland. July 23.

Musch, J., & Klauer, K. C. (2002). Psychological experimenting on
the World Wide Web: Investigating content effects in syllogistic
reasoning. In M. B. B. Batinic & U.-D. Reips (Eds.), Online
social sciences (pp. 181–212). Göttingen: Hogrefe.

Nosek, B. A. (2007). Implicit–explicit relations. Current Directions in
Psychological Science, 16, 65–69.

Paolacci, G., Chandler, J., & Ipeirotis, P. G. (2010). Running
experiments on Amazon Mechanical Turk. Judgment and
Decision Making, 5, 411–419.

Pontin, J. (2007). Artificial intelligence, with help from the humans.
New York Times. March.

Rand, D. G. (in press). The promise of Mechanical Turk: How online
labor markets can help theorists run behavioral experiments.
Journal of Theoretical Biology.

Reiley, D. (1999). Using field experiments to test equivalence between
auction formats: Magic on the Internet. American Economic
Review, 89, 1063–1080.

Behav Res

http://works.bepress.com/alek_felstiner/1/
http://works.bepress.com/alek_felstiner/1/
http://hdl.handle.net/2451/29585

Reips, U. D. (2000). The Web experiment method: Advantages,
disadvantages and solutions. In M. H. Birnbaum (Ed.), Psycho-
logical experiments on the Internet (pp. 89–114). San Diego:
Academic Press.

Reips, U. D. (2001). The Web experimental psychology lab: Five
years of data collection on the Internet. Behavior Research
Methods, Instruments, & Computers, 33, 201–211.

Reips, U. D. (2002). Standards for Internet-based experimenting.
Experimental Psychology, 49, 243–256.

Reips, U. D., & Birnbaum, M. H. (2011). Behavioral research and data
collection via the internet. In R. W. Proctor & K.-P. L. Vu (Eds.),
The handbook of human factors in web design (pp. 563–585).
Mahwah: Erlbaum.

Ross, J., Irani, L., Silberman, M. S., Zaldivar, A., & Tomlinson, B.
(2010). Who are the crowdworkers? Shifting demographics in
Amazon Mechanical Turk. In K. Edwards & T. Rodden (Eds.),
Proceedings of the ACM Conference on Human Factors in
Computing Systems (pp. 2863–2872). New York: ACM.

Ryan, K. J., Brady, J., Cooke, R., Height, D., Jonsen, A., King, P., et
al. (1979). The Belmont report: Ethical principles and guidelines
for the protection of human subjects of research. Washington,
DC: National Commission for the Protection of Human Subjects
of Biomedical and Behavioral Research.

Salganik, M. J., Dodds, P. S., & Watts, D. J. (2006). Experimental
study of inequality and unpredictability in an artificial cultural
market. Science, 311, 854–856.

Schmidt, W. C. (2007). Technical considerations when implementing
online research. In A. Joinson, K. McKenna, T. Postmes, & U.-D.
Reips (Eds.), The Oxford handbook of internet psychology (pp.
461–472). Oxford: Oxford University Press.

Shariff, A. F., & Norenzayan, A. (2007). God is watching you.
Psychological Science, 18, 803.

Sheng, V. S., Provost, F., & Ipeirotis, P. G. (2008). Get another label?
Improving data quality and data mining using multiple, noisy

labelers. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (pp. 614–
622). New York: ACM.

Smith, M., & Leigh, B. (1997). Virtual subjects: Using the Internet as
an alternative source of subjects and research environment.
Behavior Research Methods, 29, 496–505.

Snow, R., O’Connor, B., Jurafsky, D., & Ng, A. Y. (2008). Cheap and
fast—but is it good? Evaluating non-expert annotations for
natural language tasks. In M. Lapata & H. T. Ng (Eds.),
Proceedings of the Conference on Empirical Methods in Natural
Language Processing (pp. 254–263). New York: ACM.

Suri, S., & Watts, D. J. (2011). Cooperation and contagion in
Web-based, networked public goods experiments. PLoS One,
6(3), e16836.

Tversky, A., & Kahneman, D. (1981). The framing of decisions and
the psychology of choice. Science, 211, 453–458.

Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive
reasoning: The conjuction fallacy in probability judgement.
Psychological Review, 90, 293–315.

Urbano, J., Morato, J., Marrero, M., & Martín, D. (2010). Crowd-
sourcing preference judgments for evaluation of music similarity
tasks. In M. Lease, V. Carvalho, & E. Yilmaz (Eds.), Proceedings
of the ACM SIGIR 2010 Workshop on Crowdsourcing for Search
Evaluation (CSE 2010) (pp. 9–16). Geneva, Switzerland.

Voracek, M., Stieger, S., & Gindl, A. (2001). Online replication of
evolutionary psychology evidence: Sex differences in sexual
jealousy in imagined scenarios of mate’s sexual versus emotional
infidelity. In U.-D. Reips & M. Bosnjak (Eds.), Dimensions of
Internet science (pp. 91–112). Lengerich: Pabst Science.

Zhu, D., & Carterette, B. (2010). An analysis of assessor behavior in
crowdsourced preference judgments. In M. Lease, V. Carvalho, &
E. Yilmaz (Eds.), Proceedings of the ACM SIGIR 2010 Workshop
on Crowdsourcing for Search Evaluation (CSE 2010) (pp. 21–
26). Geneva, Switzerland.

Behav Res

	Conducting behavioral research on Amazon’s Mechanical Turk
	Abstract
	Introduction
	Why Mechanical Turk?
	Validity of worker behavior
	Organization of this guide

	Mechanical Turk basics
	Workers
	Requesters
	The Anatomy of a HIT
	Improving HIT efficiency

	Conducting studies on Mechanical Turk
	Surveys
	Random assignment
	Synchronous experiments

	Quality assurance
	Security

	Ethics and privacy
	Informed consent
	Debriefing
	Restricted populations
	Compensation
	Confidentiality

	Turker community
	Conclusion
	Appendix
	HIT parameters
	Sandbox
	HIT templates
	Programming interfaces

	References

